Baidu
map

Mol Cell:揭秘!为何干细胞会如此特殊?

2016-08-08 佚名 生物谷

近日,来自Sanford Burnham Prebys医学发现研究所的科学家在理解有机体细胞多样性表现机制上取得了重大成果,相关研究刊登于Molecular Cell杂志上,文章中,研究者表示,名为OCT4的蛋白质或可缩小干细胞分化而成的细胞类型的范围,该研究或对于制造特殊类型的细胞用于开发治疗一系列疾病的新型疗法提供了新的希望,同时也将帮助理解哪些细胞容易被影响细胞分化的药物所影响。 研究者

近日,来自Sanford Burnham Prebys医学发现研究所的科学家在理解有机体细胞多样性表现机制上取得了重大成果,相关研究刊登于Molecular Cell杂志上,文章中,研究者表示,名为OCT4的蛋白质或可缩小干细胞分化而成的细胞类型的范围,该研究或对于制造特殊类型的细胞用于开发治疗一系列疾病的新型疗法提供了新的希望,同时也将帮助理解哪些细胞容易被影响细胞分化的药物所影响。

研究者Laszlo Nagy博士说道,干细胞特异性的蛋白OCT4可以刺激特定基因,当这些基因被激活时就会促进细胞分化或者变得更加具有特异性,这种启动激活作用或可自定义干细胞对诱导其分化的信号所产生的反应,并且使其背后的遗传过程可以更高效地进行。

作为一种有机体,比如人类机体,其往往是通过最简单、早期的形式来不断发育成熟,机体的细胞过渡往往是通过一种高度可变的状态(干细胞)过渡到可以组成机体组织的特殊类型的细胞,目前很多实验室都在不断尝试阐明特殊类型细胞产生的过程,而这些特殊类型的细胞可以被移植入患者机体中来治疗相关疾病,比如利用胰腺β细胞来治疗糖尿病,或者利用可以产生多巴胺的神经元细胞来治疗帕金森疾病。

OCT4是一种转录因子,即调节基因活性的蛋白质,OCT4可以维持干细胞产生机体任何组织细胞的能力,其往往通过结合DNA并且补充一些可以开启或抑制特殊基因表达的因子来发挥作用;本文研究结果表明,OCT4还可以同被外部信号激活的转录因子相互合作,比如视黄酸受体(RAR)和β-连环蛋白,当其相互结合后就可以开启各自基因的表达过程。维生素A可以将干细胞转化成为神经前体细胞(neuronal precursors),而且被Wnt激活的β-连环蛋白会支持干细胞的多潜能性同时还会促进干细胞非神经性的分化,当然这依赖于存在的信号不同而定。

研究者Nagy说道,我们的研究结果阐明了一般性的原则,即相同的分化信号如何诱导多种不同类型细胞的不同转变,然而在干细胞中,OCT4可以将视黄酸受体(RNA)补充给骨髓细胞中的神经细胞基因,而另外的转录因子则会将RAR补充给用于粒细胞程序的特殊基因,当然到底是哪种因子可以确定骨髓细胞或其它类型细胞分化信号所产生的效应还有待于后期研究确定。

从某种意义上来说,研究者发现了可以连接细胞输入输出的干细胞代码,输入信号比如vitamin A和Wnt信号等,如今研究者计划通过深入研究来确定是否存在其它转录因子的行为也和OCT4相似,也就说研究者是否能够在更多类型的成熟细胞中找到特殊的信息代码。如果其它因子也具有这种双重功能,即维持当前的细胞状态并且驱动特定基因对外部信号产生反应,那么研究人员或许就可以回答干细胞研究领域和发育生物学中的一些关键问题了。

原始出处

Zoltan Simandi10, Attila Horvath10, Lyndsey C. Wright, Ixchelt Cuaranta-Monroy, Isabella De Luca, Katalin Karolyi, Sascha Sauer, Jean-Francois Deleuze, Lorraine J. Gudas, Shaun M. Cowley, Laszlo Nagy.OCT4 Acts as an Integrator of Pluripotency and Signal-Induced Differentiation.Mol Cell.2016

版权声明:
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (2)
#插入话题
  1. [GetPortalCommentsPageByObjectIdResponse(id=1869501, encodeId=d0ef1869501a7, content=<a href='/topic/show?id=fd764459a8' target=_blank style='color:#2F92EE;'>#Cell#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=44, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=4459, encryptionId=fd764459a8, topicName=Cell)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=524d95, createdName=zhaozhouchifen, createdTime=Sun May 21 20:29:00 CST 2017, time=2017-05-21, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1959760, encodeId=fcde1959e60cd, content=<a href='/topic/show?id=dbe6445416' target=_blank style='color:#2F92EE;'>#CEL#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=39, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=4454, encryptionId=dbe6445416, topicName=CEL)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=c3ff68, createdName=维他命, createdTime=Tue Dec 27 00:29:00 CST 2016, time=2016-12-27, status=1, ipAttribution=)]
  2. [GetPortalCommentsPageByObjectIdResponse(id=1869501, encodeId=d0ef1869501a7, content=<a href='/topic/show?id=fd764459a8' target=_blank style='color:#2F92EE;'>#Cell#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=44, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=4459, encryptionId=fd764459a8, topicName=Cell)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=524d95, createdName=zhaozhouchifen, createdTime=Sun May 21 20:29:00 CST 2017, time=2017-05-21, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1959760, encodeId=fcde1959e60cd, content=<a href='/topic/show?id=dbe6445416' target=_blank style='color:#2F92EE;'>#CEL#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=39, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=4454, encryptionId=dbe6445416, topicName=CEL)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=c3ff68, createdName=维他命, createdTime=Tue Dec 27 00:29:00 CST 2016, time=2016-12-27, status=1, ipAttribution=)]
    2016-12-27 维他命

相关资讯

盘点:干细胞的临床治疗取得突破性进展一览表

2016年过半,免疫细胞治疗肿瘤取得了突破性进展,尤其是CAR-T疗法在多个临床研究中都取得了良好效果,在实体瘤的治疗上也取得一定的进展,未来FDA很可能会批准诺华CAR-T治疗药物CTL019上市,将成为世界首个CAR-T治疗药物。目前,传统的免疫细胞治疗已经在肿瘤治疗方面凸显疗效,而干细胞的临床治疗也在心血管系统疾病、糖尿病、退行性疾病、自身免疫性疾病等重大疾病中得到应用研究,取得一系列临

CCR:干细胞加速罕见癌症治疗药物筛选

最近来自美国约翰斯霍普金斯Kimmel癌症中心的研究人员利用人类干细胞开发出一个药物筛选新系统,可能会加速对罕见癌症治疗药物的筛选过程。 相关研究发表在国际学术期刊Clinical Cancer Research上。 在这篇文章中研究人员详细描述了他们如何将人类干细胞转变为一种侵袭性罕见儿童脑癌——成神经管细胞瘤。随后再将这些癌细胞的遗传信息与成百上千种已经用于药物筛选的常见人类癌细胞进行

上海交大团队在雌性生殖干细胞研究中取得新进展

来自上海交通大学生物医学工程学院和Bio-X研究院的研究人员通过对小鼠雌性生殖干细胞表观遗传修饰谱的研究,发现了决定小鼠雌性生殖干细胞基本生物学特性的表观遗传调控机制,这一研究成果于2016年7月27日在Genome Biology杂志(影响因子:11.3)在线发表。传统观点认为,女性和绝大多数雌性哺乳动物卵母细胞的产生仅发生在胎儿期,出生后卵母细胞数目不再增加,反而逐年减少,这意味着出生后卵巢无

科技部:2017“干细胞及转化研究”国家重点研发计划专项指南出炉(附全文)

关于对国家重点研发计划干细胞及转化研究等6个重点专项2017年度项目申报指南征求意见的通知 根据《国务院关于改进加强中央财政科研项目和资金管理的若干意见》(国发[2014]11号)、《国务院关于深化中央财政科技计划(专项、基金等)管理改革方案的通知》(国发[2016]64号)、《科技部 财政部关于改革过渡期国家重点研发计划组织管理有关事项的通知》(国科发资[2015]423号)等文件要求,现

Cell Metab:TCA代谢产物能否促进干细胞自我更新也要看“状态”

 近日来自美国加州大学洛杉矶分校的研究人员在国际学术期刊Cell Metabolism上发表了一项最新研究进展,他们发现三羧酸循环中间代谢产物能够影响人类多能干细胞的分化过程,并且这种影响依赖于干细胞的多能性状态。该研究对于如何维持干细胞自我更新抑制分化提供了重要信息。 众所周知多能干细胞能够自我更新或从原始态以及更进一步的分化状态--始发态开始进行分化,目前可以通过特定的培养

全国首例胎盘干细胞治疗骨关节炎临床应用获成功

8月,江苏大学附属医院“收治”的一名骨关节炎患者在历经为期 7个月的胎盘间充质干细胞治疗后,已达到预期治疗效果。据悉,这是江苏大学附属医院与博雅干细胞合作实施的全国首例应用胎盘干细胞治疗骨关节炎,是胎盘干细胞技术在骨关节炎领域的全新突破。 证实:胎盘干细胞可促进骨关节软骨损伤修复 骨关节炎是一种退行性病变,由于关节软骨退化损伤和破坏等引起,在60岁以上的人群中患病率可

Baidu
map
Baidu
map
Baidu
map