Baidu
map

medRxiv: 英国团队建立CoVID-19传播空间模型,估计病毒在英格兰和威尔士的早期传播趋势和峰值时间

2020-03-22 公共卫生学术热点追踪 公共卫生学术热点追踪

2月14日,medRxiv预印本上发表了一篇来自英国埃克塞特大学、布里斯托尔大学、华威大学研究团队的题为“Aspatial model of CoVID-19 transmission i

2月14日,medRxiv预印本上发表了一篇来自英国埃克塞特大学、布里斯托尔大学、华威大学研究团队的题为“Aspatial model of CoVID-19 transmission in England and Wales: early spread andpeak timing”的文章,使用现有的全国规模集合种群(metapopulation)模型来评估COVID-19在英国和威尔士的传播,文章使用2011年的人口普查数据来获取人口规模和人口流动情况,以及使用中国当前疫情的参数估计。

研究结果预测,在没有对照和生物参数保持不变的前提下,在英格兰和威尔士的人与人之间传播开始后126至147天(~4个月)内,CoVID-19的爆发将达到高峰。因此,如果从2月份开始出现人与人之间的传播并持续下去,文章预测英格兰和威尔士的疫情高峰将出现在6月份。起始时间对峰时影响最小,模型随机性会使峰时有10天的变动空间。结合实际参数的不确定性,峰值时间估计在人与人之间传播出现后的78天到241天之间。传染率的季节性变化对流行高峰出现的时间和规模、以及总发病率都有很大的影响。

在没有控制措施的情况下,文章初步估计了CoVID-19在英格兰和威尔士的潜在传播进程。这些结果可以通过改进流行病学参数估计来修正,并可用于控制措施调查和成本效益分析。传播率的季节性变化可能会将高峰时间推迟到冬季,这将对英格兰和威尔士的医疗能力和措施规划产生重要影响。

原始出处:
Leon Danon, et al. A spatial model of CoVID-19 transmission in England and Wales: early spread and peak timing. medRxiv. doi: https://doi.org/10.1101/2020.02.12.20022566

版权声明:
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (4)
#插入话题
  1. [GetPortalCommentsPageByObjectIdResponse(id=381018, encodeId=e40e381018e1, content=好, beContent=null, objectType=article, channel=null, level=null, likeNumber=90, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=bbc11488193, createdName=thm112988, createdTime=Fri Mar 27 05:57:28 CST 2020, time=2020-03-27, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1391254, encodeId=6746139125421, content=<a href='/topic/show?id=06031149070' target=_blank style='color:#2F92EE;'>#medRxiv#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=0, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=11490, encryptionId=06031149070, topicName=medRxiv)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=101c2500074, createdName=124987e8m07暂无昵称, createdTime=Tue Mar 24 12:44:17 CST 2020, time=2020-03-24, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1610383, encodeId=dfdd161038355, content=<a href='/topic/show?id=eb6b1145939' target=_blank style='color:#2F92EE;'>#Med#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=52, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=11459, encryptionId=eb6b1145939, topicName=Med)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=552a19396740, createdName=ms3994565386320060, createdTime=Tue Mar 24 12:44:17 CST 2020, time=2020-03-24, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1047786, encodeId=e894104e7866a, content=梅斯里提供了很多疾病的模型计算公式,赞一个!, beContent=null, objectType=article, channel=null, level=null, likeNumber=66, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=f0620, createdName=CHANGE, createdTime=Mon Mar 23 00:44:17 CST 2020, time=2020-03-23, status=1, ipAttribution=)]
    2020-03-27 thm112988

    0

  2. [GetPortalCommentsPageByObjectIdResponse(id=381018, encodeId=e40e381018e1, content=好, beContent=null, objectType=article, channel=null, level=null, likeNumber=90, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=bbc11488193, createdName=thm112988, createdTime=Fri Mar 27 05:57:28 CST 2020, time=2020-03-27, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1391254, encodeId=6746139125421, content=<a href='/topic/show?id=06031149070' target=_blank style='color:#2F92EE;'>#medRxiv#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=0, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=11490, encryptionId=06031149070, topicName=medRxiv)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=101c2500074, createdName=124987e8m07暂无昵称, createdTime=Tue Mar 24 12:44:17 CST 2020, time=2020-03-24, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1610383, encodeId=dfdd161038355, content=<a href='/topic/show?id=eb6b1145939' target=_blank style='color:#2F92EE;'>#Med#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=52, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=11459, encryptionId=eb6b1145939, topicName=Med)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=552a19396740, createdName=ms3994565386320060, createdTime=Tue Mar 24 12:44:17 CST 2020, time=2020-03-24, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1047786, encodeId=e894104e7866a, content=梅斯里提供了很多疾病的模型计算公式,赞一个!, beContent=null, objectType=article, channel=null, level=null, likeNumber=66, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=f0620, createdName=CHANGE, createdTime=Mon Mar 23 00:44:17 CST 2020, time=2020-03-23, status=1, ipAttribution=)]
  3. [GetPortalCommentsPageByObjectIdResponse(id=381018, encodeId=e40e381018e1, content=好, beContent=null, objectType=article, channel=null, level=null, likeNumber=90, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=bbc11488193, createdName=thm112988, createdTime=Fri Mar 27 05:57:28 CST 2020, time=2020-03-27, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1391254, encodeId=6746139125421, content=<a href='/topic/show?id=06031149070' target=_blank style='color:#2F92EE;'>#medRxiv#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=0, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=11490, encryptionId=06031149070, topicName=medRxiv)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=101c2500074, createdName=124987e8m07暂无昵称, createdTime=Tue Mar 24 12:44:17 CST 2020, time=2020-03-24, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1610383, encodeId=dfdd161038355, content=<a href='/topic/show?id=eb6b1145939' target=_blank style='color:#2F92EE;'>#Med#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=52, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=11459, encryptionId=eb6b1145939, topicName=Med)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=552a19396740, createdName=ms3994565386320060, createdTime=Tue Mar 24 12:44:17 CST 2020, time=2020-03-24, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1047786, encodeId=e894104e7866a, content=梅斯里提供了很多疾病的模型计算公式,赞一个!, beContent=null, objectType=article, channel=null, level=null, likeNumber=66, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=f0620, createdName=CHANGE, createdTime=Mon Mar 23 00:44:17 CST 2020, time=2020-03-23, status=1, ipAttribution=)]
  4. [GetPortalCommentsPageByObjectIdResponse(id=381018, encodeId=e40e381018e1, content=好, beContent=null, objectType=article, channel=null, level=null, likeNumber=90, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=bbc11488193, createdName=thm112988, createdTime=Fri Mar 27 05:57:28 CST 2020, time=2020-03-27, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1391254, encodeId=6746139125421, content=<a href='/topic/show?id=06031149070' target=_blank style='color:#2F92EE;'>#medRxiv#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=0, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=11490, encryptionId=06031149070, topicName=medRxiv)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=101c2500074, createdName=124987e8m07暂无昵称, createdTime=Tue Mar 24 12:44:17 CST 2020, time=2020-03-24, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1610383, encodeId=dfdd161038355, content=<a href='/topic/show?id=eb6b1145939' target=_blank style='color:#2F92EE;'>#Med#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=52, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=11459, encryptionId=eb6b1145939, topicName=Med)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=552a19396740, createdName=ms3994565386320060, createdTime=Tue Mar 24 12:44:17 CST 2020, time=2020-03-24, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1047786, encodeId=e894104e7866a, content=梅斯里提供了很多疾病的模型计算公式,赞一个!, beContent=null, objectType=article, channel=null, level=null, likeNumber=66, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=f0620, createdName=CHANGE, createdTime=Mon Mar 23 00:44:17 CST 2020, time=2020-03-23, status=1, ipAttribution=)]
    2020-03-23 CHANGE

    梅斯里提供了很多疾病的模型计算公式,赞一个!

    0

相关资讯

Eur Heart J:新冠病毒对心血管或有长期影响

3月18日,四川大学华西医院心内科陈茂教授等联合英国学者,在《欧洲心脏病学杂志》上在线发表观点文章指出,新冠病毒感染不仅可导致急性心血管损伤,对患者的心血管系统可能还有长期影响。

Nature:加速疫苗临床可能带来的风险

新冠疫苗的研制正在以惊人的速度进行着。3月17日,美国华盛顿州西雅图市几十名健康志愿者,在美国政府资助的第一阶段安全试验中接种了Moderna公司开发的疫苗。

medRxiv: 基于统计学的冠状病毒2019-nCoV在中国大陆传播的预测

乌克兰国家科学院的科研人员在medRxiv预印版平台发表论文“Statisticsbased predictions of coronavirus 2019-nCoV spreading

Lancet:呼吸道样本SARS-CoV-2 检测转阴后,粪便样本可能长时间仍为阳性

近日,Lancet子刊《Lancet Gastroenterology & Hepatology》刊登了中山大学附属第五医院研究团队的文章《Prolonged presence of SARS

Nature:五个图表揭示新冠病毒大流行

日前,Nature制作了关于这次新冠病毒疫情的五张图表,以一种非常直观的方式为我们呈现了病毒确诊病例的变化趋势、R0值对比、科研人员发布研究的速度、旅行限制对碳排放和空气质量的影响、以及和2003年S

Science:武汉封城前86%患者未被发现,隐形患者极大助推了病毒传播

《科学》杂志在线发表了哥伦比亚大学 Jeffrey Shaman 领导的伦敦帝国大学、加州大学戴维斯分校、清华大学和香港大学等国际团队的一项研究成果,显示未记录的新冠肺炎患者,包括许多可能没有严重症状

Baidu
map
Baidu
map
Baidu
map