Baidu
map

Radiology:可检测肺气肿、气胸和胸腔积液的商用胸片AI工具

2024-02-15 shaosai MedSci原创 发表于陕西省

现阶段,商业上可用的人工智能(AI)工具可以帮助放射科医生解读胸部x光片,但其在现实生活中的诊断准确性尚不清楚。

胸部x光片是种常见的诊断工具,但正确判析图像需要大量的训练和经验。近几年来,基于卷积神经网络的图像辅助检索技术在图像辅助任务中得到了广泛的应用。由于胸片在临床决策中的广泛应用以及大规模训练数据集的公开可用性,许多研究已经调查了基于深度学习的人工智能模型在胸片分析中执行各种任务的能力。

现阶段,商业上可用的人工智能(AI)工具可以帮助放射科医生解读胸部x光片,但在现实生活中的诊断准确性尚不清楚。


近日,发表在European Radiology杂志的一项研究评价了四种市售人工智能工具在胸片上检测肺气肿气胸和胸腔积液的诊断准确性。

本回顾性研究纳入了于2020年1月在丹麦四家医院之一接受胸部x线检查的连续成年患者。两名胸科放射科医生(或三名,在意见不一致的情况下),他们可以独立获得所有以前和未来的胸片成像标签,作为参考标准。计算受试者工作特征曲线下面积、灵敏度和特异性。敏感度和特异性根据发现的严重程度、胸片上发现的数量和x线片投影进行分层。采用χ2和McNemar检验进行比较。

数据集包括2040例患者(中位年龄72岁[IQR, 58-81岁];女性1033例),其中669例(32.8%)有目标结果。人工智能工具显示接受者工作特征曲线下的面积范围为:肺气肿0.83-0.88,气胸0.89-0.97,胸腔积液0.94-0.97。敏感度范围为:肺气肿72%-91%,气胸63%-90%,胸腔积液62%-95%。所有目标结果的阴性预测值为92%-100%。在肺气肿、气胸和胸腔积液中,有正常或单一表现的胸片特异性较高(范围分别为85%-96%、99%-100%和95%-100%),而有四种或以上表现的胸片特异性较低(范围分别为27%-69%、96%-99%、65%-92%)(P < 0.001)。相对于较大的发现(范围,81%-100%;P值范围,>0.99至< 0.001)。


 
 AI工具的性能与相应的影像学报告靶点结果的比较

本项研究表明,当代人工智能工具对胸片上的肺气肿、气胸和胸腔积液具有中高灵敏度。然而,与影像学报告相比,人工智能工具产生了更多的假阳性结果,并且在较小的目标发现和存在多个发现时的表现有所下降。 

原文出处:

Louis Lind Plesner,Felix C Müller,Mathias W Brejnebøl,et al.Commercially Available Chest Radiograph AI Tools for Detecting Airspace Disease, Pneumothorax, and Pleural Effusion.DOI:10.1148/radiol.231236

版权声明:
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (1)
#插入话题
  1. [GetPortalCommentsPageByObjectIdResponse(id=2187390, encodeId=b695218e390f6, content=<a href='/topic/show?id=8d71215562' target=_blank style='color:#2F92EE;'>#AI#</a> <a href='/topic/show?id=293484132b0' target=_blank style='color:#2F92EE;'>#胸片#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=84, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=2155, encryptionId=8d71215562, topicName=AI), TopicDto(id=84132, encryptionId=293484132b0, topicName=胸片)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=cade5395722, createdName=梅斯管理员, createdTime=Thu Feb 15 11:39:09 CST 2024, time=2024-02-15, status=1, ipAttribution=陕西省)]
    2024-02-15 梅斯管理员 来自陕西省

相关资讯

European Radiology:AI在呼吸门诊患者胸片中的应用

在人工智能(AI)在影像诊断中的各种应用中,使用深度学习(DL)算法设计的胸部X线片商业AI解决方案引起了临床的关注,并在检测恶性肺结节、肺结核和实验数据集中的各种异常情况方面表现出优异的性能。

European Radiology:基于AI的全自动脾分割在肝癌TACE患者风险分层中的应用

随着人工智能领域的发展,该技术为临床提供了关于自动器官分割和体积评估的可能,可以很容易地实时整合到临床工作流程中。

European Radiology:AI在BI-RADS 0类乳腺钼靶病变方面的附加价值

乳腺癌是全世界范围内最常见的女性恶性肿瘤,而乳腺钼靶检查是检测早期乳腺癌的主要方式和有效途径。

Radiology:脑MRI肿瘤检测模型的半监测训练

随着人工智能的飞速发展,人们越来越意识到在影像成像中实现对肿瘤位置的机器认知,其价值远远超过潜在的计算机辅助检测应用。

被离职,又被要求重新入职,AI领域这一波职场瓜吃到了么?

因此,AI企业与研究机构需要在个人利益与社会利益之间寻求平衡,避免过于片面追求个人与公司利益从而忽视可能造成“面向未来的”风险,这需要加强监管措施的研究。

Nature:中外团队合作,首次通过AI从头设计蛋白-蛋白间相互作用,直接生成抗体药物

该研究开发了一种利用蛋白质表面特征指纹图谱的机器学习方法,来从头设计新的蛋白质,这些蛋白质与癌症免疫治疗靶标或新冠病毒靶标的结合亲和力与自然产生的抗体相当。

European Radiology:基于AI的计算机辅助诊断在乳腺钼靶中的应用

目前,基于人工智能的计算机辅助诊断(AI-CAD)被应用于钼靶检查,并显示出与独立的诊断性能相当或更高的性能,同时在作为附加工具使用时,显著提高了放射科医生的诊断性能

Radiology:AI在多发性硬化皮质和皮质旁病变检测中的评估

使用人工智能(AI)的试点研究已经能够从常规临床MRI方案(即T1和质子密度/T2加权序列的组合)中生成人工DIR图像。

Radiology:AI改善了健康筛查人群胸片上的肺结节检测

尽管在几个大型随机试验中,胸部X光片作为筛查工具未能降低肺癌死亡率,但胸部X光片仍常规用于筛查各种肺部疾病。特别是在一些国家,使用胸片的健康检查通常是针对普通人群进行的。

Baidu
map
Baidu
map
Baidu
map