中医中药临床研究特点与分析(5)
2015-07-04 MedSci MedSci原创
表7 用最大方差旋转后的结果Ratation Method: VarimaxRotated Factor Pattern FACTOR1FACTOR2FACTOR3FACTOR4FACTOR5FACTOR6FACTOR7X1-0.062450.09920-0.014970.011700.02965-0.522080.69946X20.312840.473560.382970.135
表7 用最大方差旋转后的结果
Ratation Method: Varimax
Rotated Factor Pattern
| FACTOR1 | FACTOR2 | FACTOR3 | FACTOR4 | FACTOR5 | FACTOR6 | FACTOR7 |
X1 | -0.06245 | 0.09920 | -0.01497 | 0.01170 | 0.02965 | -0.52208 | 0.69946 |
X2 | 0.31284 | 0.47356 | 0.38297 | 0.13580 | -0.30322 | 0.16946 | 0.28832 |
X3 | -0.17773 | -0.19200 | -0.11119 | -0.08104 | 0.19158 | 0.14963 | 0.25128 |
X4 | -0.13269 | -0.14422 | -0.15737 | -0.01501 | 0.69796 | -0.01596 | 0.04959 |
X5 | -0.17938 | -0.21177 | -0.03035 | -0.22857 | 0.68758 | 0.13086 | 0.12703 |
X6 | -0.02530 | -0.08450 | -0.17225 | 0.06475 | 0.76330 | -0.11227 | -0.06947 |
X7 | -0.14733 | 0.04919 | 0.01089 | -0.16757 | 0.85082 | -0.16959 | -0.04231 |
X8 | -0.16971 | -0.20456 | -0.21945 | -0.23708 | 0.74389 | -0.25076 | -0.00352 |
X9 | -0.14366 | -0.17139 | -0.13784 | -0.17378 | 0.87694 | -0.02078 | 0.00422 |
X10 | -0.10847 | -0.15775 | -0.27138 | -0.27271 | 0.65952 | -0.06381 | 0.05083 |
X11 | -0.17802 | -0.08509 | -0.13540 | 0.71244 | -0.05470 | 0.03905 | 0.11520 |
X12 | -0.15806 | -0.16017 | -0.12698 | 0.80888 | -0.03059 | -0.15088 | 0.12370 |
X13 | -0.13129 | -0.15894 | -0.11035 | 0.86245 | -0.14046 | -0.00676 | -0.01933 |
X14 | -0.15416 | -0.02643 | -0.16234 | 0.82347 | -0.13623 | -0.12197 | 0.01558 |
X15 | -0.10511 | 0.02713 | 0.07716 | 0.63256 | -0.09744 | -0.07457 | -0.07479 |
X16 | 0.04878 | -0.10513 | -0.11008 | 0.75323 | 0.00831 | -0.07448 | -0.31314 |
X17 | -0.13955 | -0.15942 | -0.11169 | 0.87826 | -0.10333 | -0.08308 | 0.03964 |
X18 | -0.14037 | -0.16666 | 0.05382 | 0.73416 | -0.16796 | -0.08315 | 0.15436 |
X19 | -0.13098 | -0.16898 | 0.66278 | 0.00634 | 0.07020 | -0.03612 | -0.11285 |
X20 | -0.02514 | -0.17077 | 0.75762 | 0.06239 | 0.18627 | -0.14420 | 0.12874 |
X21 | -0.14359 | -0.05279 | 0.75331 | -0.13224 | -0.01847 | 0.05489 | -0.24698 |
X22 | -0.15270 | -0.05497 | 0.65062 | -0.01759 | -0.15204 | -0.10523 | 0.08826 |
X23 | 0.07751 | 0.06672 | 0.49343 | -0.24906 | -0.30559 | -0.15385 | -0.28155 |
X24 | -0.12474 | -0.16254 | 0.85747 | -0.17044 | -0.00825 | -0.20846 | 0.03920 |
X25 | -0.14086 | -0.16937 | 0.79189 | -0.02309 | -0.18745 | 0.02833 | 0.04644 |
X26 | -0.17647 | -0.19083 | 0.77289 | -0.17914 | -0.18990 | 0.15176 | 0.09265 |
X27 | -0.13279 | -0.15422 | 0.86015 | -0.16397 | 0.00070 | -0.20799 | 0.05489 |
X28 | 0.78951 | -0.09797 | -0.09749 | -0.08246 | -0.09867 | -0.08053 | 0.03229 |
X29 | 0.79031 | -0.00189 | -0.09192 | -0.08787 | -0.11195 | 0.11394 | -0.06613 |
X30 | 0.96221 | -0.10807 | -0.10072 | -0.11359 | 0.12063 | -0.10068 | 0.01203 |
X31 | 0.87972 | -0.07479 | -0.07066 | -0.09191 | -0.13017 | -0.09542 | -0.08905 |
X32 | 0.96221 | -0.10807 | -0.10072 | -0.11359 | -0.12063 | -0.10068 | 0.01203 |
X33 | 0.79749 | -0.10580 | 0.01633 | -0.14135 | -0.06141 | -0.01773 | -0.15558 |
X34 | 0.75968 | -0.13054 | -0.11698 | 0.03794 | -0.02564 | 0.05090 | -0.04497 |
X35 | 0.68666 | -0.14848 | -0.13638 | -0.00086 | 0.07241 | -0.01672 | 0.02839 |
X36 | 0.88266 | -0.11142 | -0.09950 | -0.11900 | 0.01177 | -0.13554 | 0.06197 |
X37 | 0.89554 | -0.12100 | -0.12774 | -0.14008 | -0.00817 | -0.11931 | 0.06353 |
X38 | 0.96221 | -0.10807 | -0.10072 | -0.11359 | -0.12063 | -0.10068 | 0.01203 |
X39 | 0.40972 | -0.17395 | 0.07549 | -0.13283 | -0.19858 | 0.12620 | 0.033989 |
X40 | -0.07827 | 0.61666 | -0.21300 | -0.12472 | -0.28374 | -0.18737 | 0.18011 |
X41 | 0.03528 | 0.86937 | 0.04620 | -0.12372 | -0.13685 | -0.14034 | -0.15547 |
X42 | -0.12064 | 0.81353 | -0.06667 | -0.10586 | -0.13170 | 0.01258 | 0.15111 |
X43 | -0.11665 | 0.89402 | -0.10428 | -0.10768 | 0.01752 | -0.12253 | -0.07788 |
X44 | -0.13039 | 0.74934 | -0.07738 | 0.01148 | 0.04020 | -0.17005 | 0.06373 |
X45 | -0.11512 | 0.75658 | -0.12785 | 0.02541 | -0.07516 | -0.03218 | 0.07889 |
X46 | -0.12434 | 0.86339 | 0.04028 | -0.13699 | -0.14773 | -0.04752 | 0.00202 |
X47 | 0.02984 | 0.86314 | -0.09087 | -0.11635 | -0.00343 | -0.15660 | -0.06027 |
X48 | -0.12490 | 0.84121 | -0.07203 | 0.02647 | -0.11887 | -0.02607 | -0.01005 |
X49 | -0.12132 | 0.73472 | -0.14034 | -0.14581 | 0.00274 | -0.01647 | 0.14430 |
X50 | -0.03182 | 0.75018 | -0.11873 | -0.04883 | -0.04291 | -0.09544 | 0.08917 |
X51 | -0.14461 | 0.75212 | -0.11587 | -0.00182 | -0.04431 | 0.09531 | -0.06635 |
X52 | -0.17953 | 0.55048 | -0.03960 | -0.03045 | -0.08535 | -0.04549 | -0.14377 |
X53 | -0.04971 | -0.17155 | -0.02453 | -0.12058 | 0.00130 | 0.73953 | -0.04679 |
X54 | -0.21596 | 0.05834 | -0.15809 | -0.15368 | -0.01533 | 0.78153 | 0.10120 |
X55 | 0.03912 | -0.24650 | -0.21428 | 0.17168 | -0.16050 | 0.69589 | 0.24996 |
X56 | -0.19395 | -0.19736 | 0.24560 | -0.05270 | -0.19761 | 0.67134 | -0.06766 |
X57 | 0.07609 | -0.20411 | -0.03643 | -0.14941 | -0.04338 | 0.66542 | 0.11201 |
X58 | -0.12915 | 0.11855 | -0.27371 | -0.11133 | -0.31852 | 0.48271 | 0.05074 |
X59 | -0.18473 | -0.03934 | 0.03112 | -0.08266 | -0.10554 | 0.75723 | -0.17403 |
X60 | -0.06272 | -0.20120 | -0.13354 | -0.00095 | 0.05592 | 0.75884 | -0.18211 |
X61 | -0.03200 | 0.14582 | 0.09405 | 0.10014 | 0.05766 | -0.01534 | 0.85592 |
X62 | -0.31475 | 0.03563 | -0.10272 | -0.10912 | 0.23900 | 0.35331 | -0.15774 |
X63 | -0.15536 | 0.02264 | 0.43855 | 0.20841 | -0.22590 | 0.09997 | 0.07932 |
X64 | -0.32352 | -0.33074 | -0.41432 | -0.39550 | -0.41868 | -0.43633 | -0.22665 |
X65 | -0.32352 | -0.33074 | -0.41432 | -0.39550 | -0.41868 | -0.43633 | -0.22665 |
X66 | -0.32352 | -0.33074 | -0.41432 | -0.39550 | -0.41868 | -0.43633 | -0.22665 |
根据表7数据,为每个公因子选择出所支配的指标(按贡献大小排序):
F1(第1公因子):X30(内热便秘),X38(舌红),X32(饮不解渴),X31(尿黄短少),X37(脉细弦数),X36(耳鸣聋),X29(口燥咽干),X28(形弱消瘦),X33(少眠心烦),X34(五心烦热),X35(喜凉饮)。
第1公因子支配以上12项指标,称为F1质,或称为阴虚燥热质。
F2(第2公因子):X43(唇淡口和),X41(面色不华),X46(大便稀糖),X47(夜尿清长),X48(毛发易落),X42(形寒怕冷),X45(肌冷自汗),X51(舌淡胖),X44(四肢冷),X50(脉沉无力),X49(喜热饮),X40(形体白胖),X52(齿嫩印)
第2公因子支配以上13项指标,称为F2质,或称为阴虚衰冷质。
F3(第3公因子):X27(舌苔多腻),X24(口干不饮),X25(胸满昏眩),X26(脉濡或滑),X20(中脘痞满),X21(口甜粘),X19(体形肥胖),X22(身重如裹),X23(大便不实),X63(舌淡)。
第3公因子支配以上10项指标,称为F3质,或称为痰湿郁滞质。
F4(第4公因子):X17(脉沉涩缓),X13(眼眶暗黑),X14(肌肤甲错),X12(口唇紫暗),X16(痞闷作胀),X18(舌质青紫),X11(肤色晦暗),X15(丝缕斑闪)
第4公因子支配以上8项指标,称为F4质,或称为血瘀晦涩质。
F5(第5公因子):X9(脉沉有力),X7(口微干),X6(耐寒暑),X8(二便调),X4(面色红润),X5(胃纳佳),X10(舌正)。
第5公因子支配以上7项指标,称为F7质,或称为平秘调和质。
F6(第6公因子)X54(气短懒言),X60(手易麻),X59(盆腔脏器下坠感),X53(面色白光白),X55(乏力晕眩),X57(脱肛感),X56(心悸健忘),X58(动辄汗出),X62(脉细弱无力)。
第6公因子支配以上13项指标,称为F6质,或称为气虚怠惰质。
F7(第7公因子):X61(月经淡少),X1(性别),X2(年龄),X3(体壮力强);X64(皮肤斑贴试验阳性),X65(皮肤划痕试验阳性),X66(皮内试验阳性)
结合专业知识,把X61(月经淡少),X1(性别),X2(年龄),X3(体壮力强)删除。则F7质可称为敏感质。
Standardized Scoring Coefficients
| FACTOR1 | FACTOR2 | FACTOR3 | FACTOR4 | FACTOR5 | FACTOR6 | FACTOR7 |
X1 | -0.62441 | -0.39193 | -0.16605 | -0.07860 | -0.84623 | -0.98205 | 1.85482 |
X2 | 1.23127 | 0.71102 | 0.11776 | 0.06132 | 1.55734 | 1.99064 | -2.03620 |
X3 | 0.91249 | 0.82813 | 0.52608 | 0.34973 | 1.47454 | 1.59763 | -0.92471 |
X4 | -3.97518 | -3.27768 | -1.69669 | -1.25040 | -5.75278 | -6.91421 | 3.95627 |
X5 | -0.85080 | -0.51002 | -0.13200 | -0.07635 | -1.02393 | -1.26701 | 1.65172 |
X6 | -0.33484 | -0.41768 | -0.37535 | -0.31123 | -0.38044 | -0.77212 | -0.29572 |
X7 | 0.95276 | 0.78317 | 0.45461 | 0.20683 | 1.54238 | 1.37576 | -1.53847 |
X8 | -0.77344 | -0.57658 | -0.18458 | -0.13527 | -0.94863 | -1.27814 | 1.17617 |
X9 | 3.96748 | 3.24043 | 1.90411 | 1.59255 | 6.01526 | 6.96562 | -3.15370 |
X10 | 1.26793 | 1.15064 | 0.57874 | 0.39311 | 2.11988 | 2.26594 | -1.02029 |
X11 | -3.32310 | -1.69576 | 0.06975 | 0.40352 | -4.19032 | -4.11777 | 7.40201 |
X12 | 5.47031 | 3.91391 | 1.71895 | 1.25649 | 7.71632 | 8.72161 | -8.05129 |
X13 | -2.21089 | -1.16363 | 0.12850 | 0.39703 | -2.77714 | -2.53257 | 4.58972 |
X14 | -0.92464 | -0.40361 | 0.13996 | 0.39489 | -1.18498 | -0.82477 | 2.08080 |
X15 | -0.52647 | -0.34468 | -0.08008 | 0.11195 | -0.72222 | -0.81150 | 1.07185 |
X16 | -0.30028 | 0.05234 | 0.25484 | 0.41762 | -0.25466 | -0.42910 | 1.57615 |
X17 | -0.04248 | -1.11949 | -1.82219 | -1.55982 | -0.75730 | -2.52068 | -3.88253 |
X18 | 1.71368 | 1.10674 | 0.43473 | 0.41374 | 2.32130 | 2.62774 | -2.60750 |
X19 | -2.67849 | -1.54052 | -0.39994 | -0.28518 | -3.58156 | -3.97541 | 4.11853 |
X20 | 1.07379 | 0.50102 | 0.20673 | -0.00722 | 1.24662 | 1.14722 | -2.44193 |
X21 | -0.98830 | -0.70783 | -0.20085 | -0.16764 | -1.34682 | -1.22515 | 1.47833 |
X22 | 0.81350 | 0.53834 | 0.17891 | 0.06122 | 1.04032 | 0.95247 | -0.74271 |
X23 | 1.28607 | 0.92033 | 0.54347 | 0.26853 | 1.75889 | 2.03840 | -2.11053 |
X24 | -3.44563 | -3.15401 | -1.93133 | -1.65100 | -5.26907 | -6.35509 | 1.84840 |
X25 | -1.34159 | -0.71455 | -0.07544 | -0.05688 | -1.79204 | -2.22202 | 2.96678 |
X26 | 0.01616 | -0.05198 | 0.24418 | 0.13411 | 0.06277 | 1.10088 | 0.56180 |
X27 | 5.88475 | 4.92593 | 3.33557 | 2.29393 | 9.01955 | 9.68944 | -5.50277 |
X28 | 4.08501 | 2.67951 | 1.08803 | 0.68623 | 5.57037 | 6.49398 | -6.25926 |
X29 | 1.93399 | 1.37174 | 0.69159 | 0.41175 | 2.58401 | 3.28347 | -3.40459 |
X30 | 4.59321 | 4.11007 | 3.58279 | 2.85019 | 7.04176 | 7.60477 | -0.42632 |
X31 | 0.60060 | 0.45091 | 0.16922 | 0.08300 | 0.85196 | 0.73313 | -0.73509 |
X32 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
X33 | -1.23921 | -0.44834 | 0.33097 | 0.27859 | -1.48648 | -1.09851 | 3.03795 |
X34 | 3.04972 | 1.84782 | 0.45316 | 0.24917 | 3.91315 | 3.94647 | -5.19096 |
X35 | 3.01286 | 1.97200 | 0.78410 | 0.57899 | 4.09124 | 4.56040 | -4.09893 |
X36 | -9.46459 | -7.51720 | -4.58508 | -3.26003 | -14.20568 | -15.83298 | 11.00858 |
X37 | -2.75959 | -2.29804 | -1.23416 | -0.92745 | -4.20354 | -4.93273 | 2.73161 |
X38 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
X39 | -3.32481 | -2.25865 | -0.85539 | -0.56961 | -4.73914 | -5.59999 | 5.33527 |
X40 | -0.24899 | 0.03146 | -0.03541 | -0.01914 | -0.26338 | -0.19096 | 0.77200 |
X41 | -2.57853 | -1.70620 | -0.96367 | -0.64739 | -3.80328 | -4.82543 | 3.28267 |
X42 | 1.75230 | 1.51641 | 0.81061 | 0.48179 | 2.61490 | 2.95074 | -2.44996 |
X43 | 0.36418 | -0.20871 | -0.75346 | -0.58982 | 0.08419 | -0.35486 | -2.47613 |
X44 | -0.36384 | -0.03247 | 0.25832 | 0.22869 | -0.32690 | -0.07666 | 0.62848 |
X45 | 0.74964 | 1.40959 | 1.29682 | 1.05749 | 1.59953 | 2.37508 | 1.60736 |
X46 | -0.12386 | 0.13553 | 0.03483 | 0.02531 | -0.20477 | -0.57981 | 0.90787 |
X47 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
X48 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
X49 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
X50 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
X51 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
X52 | 0.13805 | 0.14831 | 0.03185 | 0.00688 | 0.25464 | 0.29915 | -0.32968 |
X53 | 0.26728 | 0.11814 | -0.00997 | -0.04648 | 0.34162 | 0.69663 | -0.43735 |
X54 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
X55 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
X56 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
X57 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
X58 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
X59 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
X60 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
X61 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
X62 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
X63 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
X64 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
X65 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
X66 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
根据表8,可写出7个公因子的标准化得分公式:
F1 = -0.62441X '1+1.23127X'2+……+ 0.00000X'66
……………
F7 = 1.85482X,1-2.03620X,2+……+ 0.00000X,66
计算因子得分的用途:把任何一人的各项指标分别代入F1—F7公因子标准化得分公式,哪个公因子的标准化得分之代数和最高,就可以诊断为该公因子(该体质),从而建立了体质的计量诊断与鉴别诊断函数。
在进行因子分析时我们总是希望:
- 保留的公因子个数q远小于原始指标个数m,一般按以下原则来确定:①若特征值λi≥1,则保留其对应的公因子;②若前k个公因子累积贡献率达到一特定的数量(一般认为达到70%以上为宜),则保留前k个公因子,使m个原始指标的总基本上能被所保留的公因子解释。
- 各共性方差hi2接近于1,即各原始指标Xi的约大部分能由所保留的公因子解释。
- 各原始指标在同一公因子Fj上的因子载荷的绝对值|aij|(I=1,2,3,…,m,即竖读因子载荷阵)之间的判别应尽可能大,使得公因子Fj的意义主要由一个或几个|aij|值大的原始指标所表达。
讨论
1、本章设计的例题仅是虚构的47人的数据,只为演示方法用,其结论仅供参考。
2、选择的指标应该是真正反映体质的,得到的公因子才是体质。如果指标既反映体质又反映证侯,则得到的公因子是体质和证侯的混合物。在提出体质的概念假设阶段,就包括体质与证侯的区别点。
参考文献
- 王家良主编。临床流行病学,第二版。上海:上海科学技术出版社,2001。
- 金丕焕、苏炳华、贺佳主编。医用SAS统计分析。上海:复旦大学出版社,2000
- 孙振球主编。医学统计学。北京:人民卫生出版社,2002,338—340页。
- 孙爱琴:医用统计基本方法。摘自:顾婉先、张永祥主编。高等医药院校选用教材《预防医学概论》(第二版),上海:上海科学技术出版社,1996年,231页。
- 方积乾主编。医学统计学与电脑实验。上海科学技术出版社,第二版,2001;第203页程序11-1.
- 杨建伯。样本含量计算。摘自中国医学百科全书。上海:上海科学技术出版社,1985,51-52页。
- 胡良平编。Windows SAS 6.12 and 8.0 实用统计分析教程。北京:军事医学科学出版社,2001,531-532页。
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
中药的确有很多价值
127
希望以后可以实现中西医的更好结合
105
很不错哦的
130
看看
184
#中医中药#
58