Baidu
map

端午吃粽子之外,看看大神在玩啥---机器学习

2016-06-09 云栖社区 云栖社区

背景 心脏病是人类健康的头号杀手。全世界1/3的人口死亡是因心脏病引起的,而我国,每年有几十万人死于心脏病。 所以,如果可以通过提取人体相关的体侧指标,通过数据挖掘的方式来分析不同特征对于心脏病的影响,对于预测和预防心脏病将起到至关重要的作用。本文将会通过真实的数据,通过阿里云机器学习平台搭建心脏病预测案例。 数据集介绍 数据源: UCI开源数据集heart_disease 针对美

背景 心脏病是人类健康的头号杀手。全世界1/3的人口死亡是因心脏病引起的,而我国,每年有几十万人死于心脏病。 所以,如果可以通过提取人体相关的体侧指标,通过数据挖掘的方式来分析不同特征对于心脏病的影响,对于预测和预防心脏病将起到至关重要的作用。本文将会通过真实的数据,通过阿里云机器学习平台搭建心脏病预测案例。 数据集介绍 数据源: UCI开源数据集heart_disease 针对美国某区域的心脏病检查患者的体测数据,共303条数据。具体字段如下表: 数据探索流程 数据挖掘流程如下: 整体实验流程: 一、数据预处理 数据预处理也叫作数据清洗,主要在数据进入算法流程前对数据进行去噪、填充缺失值、类型变换等操作。本次实验的输入数据包括14个特征和1个目标队列。需要解决的场景是根据用户的体检指标预测是否会患有心脏病,每个样本只有患病或不患病两种,是分类问题。因为本次分类实验选用的是线性模型逻辑回归,要求输入的特征都是double型的数据。 输入数据展示: 我们看到有很多数据是文字描述的,在数据预处理的过程中我们需要根据每个字段的含义将字符型转为数值。 1)*二值类的数据* 二值类的比较容易

版权声明:
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (5)
#插入话题
  1. [GetPortalCommentsPageByObjectIdResponse(id=196428, encodeId=64ef1964289f, content=很不错,学习了。谢谢分享!, beContent=null, objectType=article, channel=null, level=null, likeNumber=119, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://wx.qlogo.cn/mmopen/ajNVdqHZLLC1BMzZWdMSPQWuib6BtQGicK8ygGBM6YakpfkRc67soFSuKbZr86enL1KggQZEZbgWSeicJibafmYfQ3AibicIHMwwicmDShfRFvvI38/0, createdBy=272a110164, createdName=laoli, createdTime=Thu May 11 06:28:03 CST 2017, time=2017-05-11, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=89352, encodeId=25ff89352cf, content=这个厉害, beContent=null, objectType=article, channel=null, level=null, likeNumber=148, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=7cde98330, createdName=milkshark, createdTime=Sat Jun 11 07:47:00 CST 2016, time=2016-06-11, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=89353, encodeId=c3988935349, content=的确不错, beContent=null, objectType=article, channel=null, level=null, likeNumber=163, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=7cde98330, createdName=milkshark, createdTime=Sat Jun 11 07:47:00 CST 2016, time=2016-06-11, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1582949, encodeId=210a158294967, content=<a href='/topic/show?id=f6e1611840d' target=_blank style='color:#2F92EE;'>#机器#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=53, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=61184, encryptionId=f6e1611840d, topicName=机器)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=13dc16973127, createdName=ms6279672939590805, createdTime=Sat Jun 11 06:30:00 CST 2016, time=2016-06-11, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=89146, encodeId=160d89146de, content=大神的世界果然不是我们凡人能懂, beContent=null, objectType=article, channel=null, level=null, likeNumber=186, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=http://cacheapi.medsci.cn/resource/upload/20160608/IMG57582B46B593C6119.jpg, createdBy=4ed51733980, createdName=1def4445m75(暂无匿称), createdTime=Fri Jun 10 00:08:00 CST 2016, time=2016-06-10, status=1, ipAttribution=)]
    2017-05-11 laoli

    很不错,学习了。谢谢分享!

    0

  2. [GetPortalCommentsPageByObjectIdResponse(id=196428, encodeId=64ef1964289f, content=很不错,学习了。谢谢分享!, beContent=null, objectType=article, channel=null, level=null, likeNumber=119, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://wx.qlogo.cn/mmopen/ajNVdqHZLLC1BMzZWdMSPQWuib6BtQGicK8ygGBM6YakpfkRc67soFSuKbZr86enL1KggQZEZbgWSeicJibafmYfQ3AibicIHMwwicmDShfRFvvI38/0, createdBy=272a110164, createdName=laoli, createdTime=Thu May 11 06:28:03 CST 2017, time=2017-05-11, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=89352, encodeId=25ff89352cf, content=这个厉害, beContent=null, objectType=article, channel=null, level=null, likeNumber=148, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=7cde98330, createdName=milkshark, createdTime=Sat Jun 11 07:47:00 CST 2016, time=2016-06-11, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=89353, encodeId=c3988935349, content=的确不错, beContent=null, objectType=article, channel=null, level=null, likeNumber=163, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=7cde98330, createdName=milkshark, createdTime=Sat Jun 11 07:47:00 CST 2016, time=2016-06-11, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1582949, encodeId=210a158294967, content=<a href='/topic/show?id=f6e1611840d' target=_blank style='color:#2F92EE;'>#机器#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=53, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=61184, encryptionId=f6e1611840d, topicName=机器)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=13dc16973127, createdName=ms6279672939590805, createdTime=Sat Jun 11 06:30:00 CST 2016, time=2016-06-11, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=89146, encodeId=160d89146de, content=大神的世界果然不是我们凡人能懂, beContent=null, objectType=article, channel=null, level=null, likeNumber=186, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=http://cacheapi.medsci.cn/resource/upload/20160608/IMG57582B46B593C6119.jpg, createdBy=4ed51733980, createdName=1def4445m75(暂无匿称), createdTime=Fri Jun 10 00:08:00 CST 2016, time=2016-06-10, status=1, ipAttribution=)]
    2016-06-11 milkshark

    这个厉害

    0

  3. [GetPortalCommentsPageByObjectIdResponse(id=196428, encodeId=64ef1964289f, content=很不错,学习了。谢谢分享!, beContent=null, objectType=article, channel=null, level=null, likeNumber=119, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://wx.qlogo.cn/mmopen/ajNVdqHZLLC1BMzZWdMSPQWuib6BtQGicK8ygGBM6YakpfkRc67soFSuKbZr86enL1KggQZEZbgWSeicJibafmYfQ3AibicIHMwwicmDShfRFvvI38/0, createdBy=272a110164, createdName=laoli, createdTime=Thu May 11 06:28:03 CST 2017, time=2017-05-11, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=89352, encodeId=25ff89352cf, content=这个厉害, beContent=null, objectType=article, channel=null, level=null, likeNumber=148, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=7cde98330, createdName=milkshark, createdTime=Sat Jun 11 07:47:00 CST 2016, time=2016-06-11, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=89353, encodeId=c3988935349, content=的确不错, beContent=null, objectType=article, channel=null, level=null, likeNumber=163, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=7cde98330, createdName=milkshark, createdTime=Sat Jun 11 07:47:00 CST 2016, time=2016-06-11, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1582949, encodeId=210a158294967, content=<a href='/topic/show?id=f6e1611840d' target=_blank style='color:#2F92EE;'>#机器#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=53, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=61184, encryptionId=f6e1611840d, topicName=机器)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=13dc16973127, createdName=ms6279672939590805, createdTime=Sat Jun 11 06:30:00 CST 2016, time=2016-06-11, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=89146, encodeId=160d89146de, content=大神的世界果然不是我们凡人能懂, beContent=null, objectType=article, channel=null, level=null, likeNumber=186, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=http://cacheapi.medsci.cn/resource/upload/20160608/IMG57582B46B593C6119.jpg, createdBy=4ed51733980, createdName=1def4445m75(暂无匿称), createdTime=Fri Jun 10 00:08:00 CST 2016, time=2016-06-10, status=1, ipAttribution=)]
    2016-06-11 milkshark

    的确不错

    0

  4. [GetPortalCommentsPageByObjectIdResponse(id=196428, encodeId=64ef1964289f, content=很不错,学习了。谢谢分享!, beContent=null, objectType=article, channel=null, level=null, likeNumber=119, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://wx.qlogo.cn/mmopen/ajNVdqHZLLC1BMzZWdMSPQWuib6BtQGicK8ygGBM6YakpfkRc67soFSuKbZr86enL1KggQZEZbgWSeicJibafmYfQ3AibicIHMwwicmDShfRFvvI38/0, createdBy=272a110164, createdName=laoli, createdTime=Thu May 11 06:28:03 CST 2017, time=2017-05-11, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=89352, encodeId=25ff89352cf, content=这个厉害, beContent=null, objectType=article, channel=null, level=null, likeNumber=148, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=7cde98330, createdName=milkshark, createdTime=Sat Jun 11 07:47:00 CST 2016, time=2016-06-11, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=89353, encodeId=c3988935349, content=的确不错, beContent=null, objectType=article, channel=null, level=null, likeNumber=163, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=7cde98330, createdName=milkshark, createdTime=Sat Jun 11 07:47:00 CST 2016, time=2016-06-11, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1582949, encodeId=210a158294967, content=<a href='/topic/show?id=f6e1611840d' target=_blank style='color:#2F92EE;'>#机器#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=53, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=61184, encryptionId=f6e1611840d, topicName=机器)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=13dc16973127, createdName=ms6279672939590805, createdTime=Sat Jun 11 06:30:00 CST 2016, time=2016-06-11, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=89146, encodeId=160d89146de, content=大神的世界果然不是我们凡人能懂, beContent=null, objectType=article, channel=null, level=null, likeNumber=186, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=http://cacheapi.medsci.cn/resource/upload/20160608/IMG57582B46B593C6119.jpg, createdBy=4ed51733980, createdName=1def4445m75(暂无匿称), createdTime=Fri Jun 10 00:08:00 CST 2016, time=2016-06-10, status=1, ipAttribution=)]
  5. [GetPortalCommentsPageByObjectIdResponse(id=196428, encodeId=64ef1964289f, content=很不错,学习了。谢谢分享!, beContent=null, objectType=article, channel=null, level=null, likeNumber=119, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=https://wx.qlogo.cn/mmopen/ajNVdqHZLLC1BMzZWdMSPQWuib6BtQGicK8ygGBM6YakpfkRc67soFSuKbZr86enL1KggQZEZbgWSeicJibafmYfQ3AibicIHMwwicmDShfRFvvI38/0, createdBy=272a110164, createdName=laoli, createdTime=Thu May 11 06:28:03 CST 2017, time=2017-05-11, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=89352, encodeId=25ff89352cf, content=这个厉害, beContent=null, objectType=article, channel=null, level=null, likeNumber=148, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=7cde98330, createdName=milkshark, createdTime=Sat Jun 11 07:47:00 CST 2016, time=2016-06-11, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=89353, encodeId=c3988935349, content=的确不错, beContent=null, objectType=article, channel=null, level=null, likeNumber=163, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=7cde98330, createdName=milkshark, createdTime=Sat Jun 11 07:47:00 CST 2016, time=2016-06-11, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1582949, encodeId=210a158294967, content=<a href='/topic/show?id=f6e1611840d' target=_blank style='color:#2F92EE;'>#机器#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=53, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=61184, encryptionId=f6e1611840d, topicName=机器)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=13dc16973127, createdName=ms6279672939590805, createdTime=Sat Jun 11 06:30:00 CST 2016, time=2016-06-11, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=89146, encodeId=160d89146de, content=大神的世界果然不是我们凡人能懂, beContent=null, objectType=article, channel=null, level=null, likeNumber=186, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=http://cacheapi.medsci.cn/resource/upload/20160608/IMG57582B46B593C6119.jpg, createdBy=4ed51733980, createdName=1def4445m75(暂无匿称), createdTime=Fri Jun 10 00:08:00 CST 2016, time=2016-06-10, status=1, ipAttribution=)]
    2016-06-10 1def4445m75(暂无匿称)

    大神的世界果然不是我们凡人能懂

    0

相关资讯

机器学习和统计模型的差异

在各种各样的数据科学论坛上这样一个问题经常被问到——机器学习和统计模型的差别是什么? 这确实是一个难以回答的问题。考虑到机器学习和统计模型解决问题的相似性,两者的区别似乎仅仅在于数据量和模型建立者的不同。这里有一张覆盖机器学习和统计模型的数据科学维恩图。 在这篇文章中,我将尽最大的努力来展示机器学习和统计模型的区别,同时也欢迎业界有经验的朋友对本文进行补充。 在我开始之前,让我们

在R语言中比较不同机器学习算法的性能差异

选择最好的机器学习模型 你如何根据需求选择最好的模型? 在你进行机器学习项目的时候,往往会有许多良好模型可供选择。每个模型都有不同的性能特点。 使用重采样方法,如交叉验证,就可以得到每个模型在未知数据上精准度的估计。你需要利用这些估计从你创建的一系列模型中选择一到两个最好的模型。 仔细比较机器学习模型 当你有了新数据集,使用多种不同的图形技术可视化数据是个好主意,你可以从不同角度来观

机器学习算法——Python & R算法代码速查表

这两年机器学习的概念一直很火,无人车、人脸识别、语音识别,似乎无所不能。但有一点被忽略了,“机器学习”算法只是众多算法的一种,和快速排序、red-black BST 一样,它有自己独特的应用场景,而且只能在这个场景中使用。而且请注意,它并不像排序算法一样,可以保证百分之百的可用性,它的边界是有问题的。它更像那些固定算法的一个扩展,机器不用精确去执行程序代码的每一行,在程序以外,它提供给我们一些努力

大牛笔记:机器学习算法概览

机器学习(Machine Learning, ML)是什么,作为一个MLer,经常难以向大家解释何为ML。久而久之,发现要理解或解释机器学习是什么,可以从机器学习可以解决的问题这个角度来说。对于MLers,理解ML解决的问题的类型也有助于我们更好的准备数据和选择算法。十个机器学习问题样例想入门机器学习的同学,经常会去看一些入门书,比如《集体智慧编程》、《机器学习实战》、《数据挖掘》、《推荐系统

Lancet:交叉试验预测抑郁结局:机器学习法

Lancet:交叉试验预测抑郁结局:机械学习法

预测建模、监督机器学习和模式分类概览

本文全面地介绍了机器学习里的监督学习的主要概念,并对监督学习的典型工作流程进行了详细的解析,具有很好的实践指导意义。 模式分类(pattern classification)和机器学习(machine learning)是非常热的话题,几乎在所有的现代应用程序中都得到了应用:例如邮局中的光学字符识别(OCR),电子邮件过滤,超市条形码扫描,等等。 在这篇文章中,我会简要描述一个典型的监

Baidu
map
Baidu
map
Baidu
map