训练神经网络的五大算法
2016-10-27 Alberto Quesada 译:何永灿 CSDN
神经网络模型的每一类学习过程通常被归纳为一种训练算法。训练的算法有很多,它们的特点和性能各不相同。 问题的抽象 人们把神经网络的学习过程转化为求损失函数f的最小值问题。一般来说,损失函数包括误差项和正则项两部分。误差项衡量神经网络模型在训练数据集上的拟合程度,而正则项则是控制模型的复杂程度,防止出现过拟合现象。 损失函数的函数值由模型的参数(权重值和偏置值)所决定。我们可以把两部分参
神经网络模型的每一类学习过程通常被归纳为一种训练算法。训练的算法有很多,它们的特点和性能各不相同。 问题的抽象 人们把神经网络的学习过程转化为求损失函数f的最小值问题。一般来说,损失函数包括误差项和正则项两部分。误差项衡量神经网络模型在训练数据集上的拟合程度,而正则项则是控制模型的复杂程度,防止出现过拟合现象。 损失函数的函数值由模型的参数(权重值和偏置值)所决定。我们可以把两部分参数合并为一个n维的权重向量,记为w。下图是损失函数f(w)的图示。 如上图所示,w*是损失函数的最小值。在空间内任意选择一个点A,我们都能计算得到损失函数的一阶、二阶导数。一阶导数可以表示为一个向量: ᐁif(w) = df/dwi (i = 1,…,n) 同样的,损失函数的二阶导数可以表示为海森矩阵( Hessian Matrix ): Hi,jf(w) = d2f/dwi·dwj (i,j = 1,…,n) 多变量的连续可微分函数的求解问题一直被人们广泛地研究。许多的传统方法都能被直接用于神经网络模型的求解。 一维优化方法 尽管损失函数的值需要由多个参数决定,但是一维优化方法在这里也
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
谢谢分享!
106
若能出个简化版的视频就好了
128
#神经网络#
58
??????
113
酒红色滚滚滚
113
神经网络算法训练是否成熟,直接决定模型的效力
94
训练神经网络的五大算法。
55
哈哈哈大结局
77
想说明什么
76
xcvvhhj
58