ARCH PATHOL LAB MED:深度学习卷积神经网络可以识别常见的胃病理损伤模式?
2020-04-05 MedSci原创 MedSci原创
目前你,大多数的深度学习(DL)研究都集中在肿瘤病理学上,而基本上没有涉及炎症病理学的领域。本研究探讨了DL在非肿瘤性胃活检中的应用。
目前你,大多数的深度学习(DL)研究都集中在肿瘤病理学上,而基本上没有涉及炎症病理学的领域。本研究探讨了DL在非肿瘤性胃活检中的应用。
本研究由2名胃肠病理学家盲法建立金标准诊断。对于第一阶段,对300例最能显示所需病理的经典病例(100例正常病例、100例幽门螺杆菌病例、100例反应性胃病病例)进行扫描和注释,进行DL分析。 每组共选取70%的病例进行训练集,30%纳入测试集。该软件为测试活检指定了彩色标签,该标签对应于DL算法指定诊断的组织面积,称为面积分布(AD)。在第二阶段,另外106个连续的非经典胃活检以同样的方式测试。
对于第一阶段,受试者操作曲线显示与金标准诊断几乎完全一致,AD的截止率为50%(曲线下面积[AUC] = 99.7%)和幽门螺杆菌(AUC = 100%),40%为反应性胃病(AUC = 99.9%)。敏感性/特异性配对如下:正常(96.7%,86.7%),幽门螺杆菌(100%,98.3%),反应性胃病(96.7%,96.7%)。对于第二阶段,受试者工作曲线的区分度稍低,诊断组的最佳AD截止率降低到40%。auc为正常的91.9%,幽门螺杆菌为100%,反应性胃病为94.0%。敏感性/特异性组如下:正常组(73.7%,79.6%),幽门螺杆菌组(95.7%,100%),反应性胃病组(100%,62.5%)。
研究表明,卷积神经网络可作为有效的幽门螺杆菌胃炎筛查工具/诊断辅助。
原始出处:
本文系梅斯医学(MedSci)原创编译整理,转载需授权!
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
#Pathol#
59
#深度学习卷积神经网络#
73
#损伤#
82
#胃病#
75
#Med#
60
#神经网络#
67