PLoS ONE:揭秘啄木鸟为何不患“脑震荡”
2012-02-11 MedSci MedSci原创
计算机模拟演示精确的表现了作用力是如何分布在啄木鸟的头骨上的 研究人员通过慢放的镜头揭示啄木鸟啄食的滑稽动作 据BBC自然科学网报道,啄木鸟的头以6米每秒的速度啄食的同时,也在承受着超过千倍重力的加速度。研究人员表示,不同长度的上下喙和海绵构造的层状骨架结构保护了啄木鸟的大脑。 啄木鸟的大脑和头骨之间存在着小小的硬脑膜,这样就不会像人类一样发生脑震荡。而且它们的大脑上下尺寸长于前后的尺寸
计算机模拟演示精确的表现了作用力是如何分布在啄木鸟的头骨上的
研究人员通过慢放的镜头揭示啄木鸟啄食的滑稽动作
据BBC自然科学网报道,啄木鸟的头以6米每秒的速度啄食的同时,也在承受着超过千倍重力的加速度。研究人员表示,不同长度的上下喙和海绵构造的层状骨架结构保护了啄木鸟的大脑。
啄木鸟的大脑和头骨之间存在着小小的硬脑膜,这样就不会像人类一样发生脑震荡。而且它们的大脑上下尺寸长于前后的尺寸,这就意味着作用在头骨上的力量被更好的分散了。
科学家通过研究发现了一种叫做舌骨的成熟骨骼,而人类只有喉结上方存在这种骨骼。舌骨从鸟嘴下面开始一直延续到鼻孔,分布于头骨的下面和四周,越过头骨顶部最终在前额处汇合。
这项新研究的合作者之一,香港工业大学的张明说他和他的同事想用定量分析来寻求真相。他告诉BBC记者,之前的大多数研究被定性答案限制了,更多的定量分析对于回答这个有趣的问题是非常有必要的,这项研究将对人类生命保护装置的设计,甚至一些工业设计有着重要帮助。
研究人员设置一个特定的环境观察啄木鸟,他们用传感器测试啄食的力度,并用两台慢镜头摄像机将捕捉这些啄食的镜头。研究人员利用计算机断层扫描和扫描电子显微镜收集啄木鸟头骨的分析数据,详细标注了这些部分是如何组合的以及骨头密度的变化位置。借助收集到的数据,科学家能够使用电脑模拟演示啄木鸟啄食过程中对头骨产生的作用力。
研究人员通过模拟演示发现有三个因素能够减少作用力对啄木鸟的伤害。首先,环绕整个头骨的舌骨结构在最初的冲击中扮演着安全带的作用。其次,鸟嘴的上下部位不均等,当撞击力从鸟嘴尖传递到骨头的时候,这种结构削弱冲击力并使它远离了大脑。最后,头骨不同部位的“海绵”构造的层状骨骼能够帮助分散冲击力,因此也能保护大脑。
研究人员强调,保护啄木鸟大脑不受伤害是这三个因素的综合作用,而不是其中的任何一个的单独作用。这个发现将帮助科学家设计出更加有效的保护装置来保护人类大脑。(生物谷 Bioon.com)
Why Do Woodpeckers Resist Head Impact Injury: A Biomechanical Investigation
Lizhen Wang,Jason Tak-Man Cheung, Fang Pu, Deyu Li, Ming Zhang, Yubo Fan
Head injury is a leading cause of morbidity and death in both industrialized and developing countries. It is estimated that brain injuries account for 15% of the burden of fatalities and disabilities, and represent the leading cause of death in young adults. Brain injury may be caused by an impact or a sudden change in the linear and/or angular velocity of the head. However, the woodpecker does not experience any head injury at the high speed of 6–7 m/s with a deceleration of 1000 g when it drums a tree trunk. It is still not known how woodpeckers protect their brain from impact injury. In order to investigate this, two synchronous high-speed video systems were used to observe the pecking process, and the force sensor was used to measure the peck force. The mechanical properties and macro/micro morphological structure in woodpecker's head were investigated using a mechanical testing system and micro-CT scanning. Finite element (FE) models of the woodpecker's head were established to study the dynamic intracranial responses. The result showed that macro/micro morphology of cranial bone and beak can be recognized as a major contributor to non-impact-injuries. This biomechanical analysis makes it possible to visualize events during woodpecker pecking and may inspire new approaches to prevention and treatment of human head injury.
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
#Plos one#
59
#脑震荡#
64