Baidu
map

Nat Med:基于症状的Covid-19的预测模型

2020-05-17 MedSci MedSci原创

个人通过手机APP报告症状也许可以预测是否感染了Covid-19。5月11日在《Nature Medicine》刊登的一项研究中,研究者开发了一个公式来预测用户是否患Covid-19。

5月11日在《Nature Medicine》刊登的一项研究中,研究者开发了一个公式来预测用户是否患Covid-19,研究显示,嗅觉和味觉丧失似乎是Covid-19最明显的指征之一。个人通过手机APP报告症状也许可以预测是否感染了Covid-19。梅斯医学将此模型开发成为手机应用,可以直接下载梅斯医学APP使用,或在此在线使用:基于临床症状的新冠肺炎(COVID-19)预测模型

该研究的主要作者Tim Spector表示,嗅觉和味觉的丧失是“大多数其他疾病都不会出现的奇特症状,因此具有特异性”。

这项研究回顾分析了美国和英国超过250万人的自我报告数据。参与者在一个APP中每天记录自己的症状,是否住院,患病史以及是否接受过SARS-CoV-2感染检测。3月24日至4月21日期间,超过18,000人提供了COVID-19诊断检测结果。

在7,178名检测结果呈阳性的参与者中,有4,668人(65%)报告嗅觉和味觉丧失。检测结果阴性的参与者中约有20%的人报告嗅觉和味觉丧失。

研究人员分析了来自英国用户的所有数据,找出与COVID-19具有强相关性的独立症状,并调整了年龄,性别和BMI因素。结果显示,味觉和嗅觉障碍、严重疲劳、持续性咳嗽和食欲不振是预测SARS-CoV-2感染的最佳指标

研究团队利用这些临床症状信息开发了一个公式来预测用户是否患病,并将其应用于提交了症状报告的800,000多名用户中。根据这个公式,大约140,000名参与者可能已患COVID-19。

该模型在英国测试发现,它的预测敏感性为0.65 (0.62–0.67), 特异性为 0.78 (0.76–0.80), ROC曲线下面积(AUC)为 0.76 (0.74–0.78), 阳性预测值为0.69 (0.66–0.71) ,阴性预测值为 0.75(0.73–0.77). 通过15638例人群交叉验证发现,其AUC为 0.75 (0.74–0.76) 。表明本模型具有较好的预测价值。

这项新研究的结果表明,嗅觉和味觉丧失应该与发热、咳嗽一样,是Covid-19患者的常见症状。该研究结果还提示,嗅觉和味觉丧失可帮助确定哪些患者应该接受SARS-CoV-2检测的筛查。与此前WHO表示,嗅觉和味觉丧失是SARS-CoV-2感染的较不常见症状不一致,相反在模型中,嗅觉和味觉丧失是最重要的因素。

在线使用:基于临床症状的新冠肺炎(COVID-19)预测模型

原始出处:

Menni C, Valdes AM, Freidin MB, Sudre CH, Nguyen LH, Drew DA, Ganesh S, Varsavsky T, Cardoso MJ, El-Sayed Moustafa JS, Visconti A, Hysi P, Bowyer RCE, Mangino M, Falchi M, Wolf J, Ourselin S, Chan AT, Steves CJ, Spector TD. Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat Med. 2020 May 11. doi: 10.1038/s41591-020-0916-2

版权声明:
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (4)
#插入话题
  1. [GetPortalCommentsPageByObjectIdResponse(id=1884327, encodeId=ade8188432e0c, content=<a href='/topic/show?id=3b2112532d8' target=_blank style='color:#2F92EE;'>#Nat#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=69, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=12532, encryptionId=3b2112532d8, topicName=Nat)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=2e6f107, createdName=liye789132251, createdTime=Thu May 21 18:53:51 CST 2020, time=2020-05-21, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1262785, encodeId=aa501262e85eb, content=<a href='/topic/show?id=52941002359d' target=_blank style='color:#2F92EE;'>#预测模型#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=66, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=100235, encryptionId=52941002359d, topicName=预测模型)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=c3ff68, createdName=维他命, createdTime=Tue May 19 12:53:51 CST 2020, time=2020-05-19, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1610490, encodeId=11111610490d3, content=<a href='/topic/show?id=eb6b1145939' target=_blank style='color:#2F92EE;'>#Med#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=57, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=11459, encryptionId=eb6b1145939, topicName=Med)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=a12645, createdName=智慧医人, createdTime=Tue May 19 12:53:51 CST 2020, time=2020-05-19, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1047811, encodeId=48a9104e8110f, content=梅斯里提供了很多疾病的模型计算公式,赞一个!, beContent=null, objectType=article, channel=null, level=null, likeNumber=80, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=f0620, createdName=CHANGE, createdTime=Mon May 18 00:53:51 CST 2020, time=2020-05-18, status=1, ipAttribution=)]
    2020-05-21 liye789132251
  2. [GetPortalCommentsPageByObjectIdResponse(id=1884327, encodeId=ade8188432e0c, content=<a href='/topic/show?id=3b2112532d8' target=_blank style='color:#2F92EE;'>#Nat#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=69, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=12532, encryptionId=3b2112532d8, topicName=Nat)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=2e6f107, createdName=liye789132251, createdTime=Thu May 21 18:53:51 CST 2020, time=2020-05-21, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1262785, encodeId=aa501262e85eb, content=<a href='/topic/show?id=52941002359d' target=_blank style='color:#2F92EE;'>#预测模型#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=66, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=100235, encryptionId=52941002359d, topicName=预测模型)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=c3ff68, createdName=维他命, createdTime=Tue May 19 12:53:51 CST 2020, time=2020-05-19, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1610490, encodeId=11111610490d3, content=<a href='/topic/show?id=eb6b1145939' target=_blank style='color:#2F92EE;'>#Med#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=57, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=11459, encryptionId=eb6b1145939, topicName=Med)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=a12645, createdName=智慧医人, createdTime=Tue May 19 12:53:51 CST 2020, time=2020-05-19, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1047811, encodeId=48a9104e8110f, content=梅斯里提供了很多疾病的模型计算公式,赞一个!, beContent=null, objectType=article, channel=null, level=null, likeNumber=80, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=f0620, createdName=CHANGE, createdTime=Mon May 18 00:53:51 CST 2020, time=2020-05-18, status=1, ipAttribution=)]
  3. [GetPortalCommentsPageByObjectIdResponse(id=1884327, encodeId=ade8188432e0c, content=<a href='/topic/show?id=3b2112532d8' target=_blank style='color:#2F92EE;'>#Nat#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=69, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=12532, encryptionId=3b2112532d8, topicName=Nat)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=2e6f107, createdName=liye789132251, createdTime=Thu May 21 18:53:51 CST 2020, time=2020-05-21, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1262785, encodeId=aa501262e85eb, content=<a href='/topic/show?id=52941002359d' target=_blank style='color:#2F92EE;'>#预测模型#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=66, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=100235, encryptionId=52941002359d, topicName=预测模型)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=c3ff68, createdName=维他命, createdTime=Tue May 19 12:53:51 CST 2020, time=2020-05-19, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1610490, encodeId=11111610490d3, content=<a href='/topic/show?id=eb6b1145939' target=_blank style='color:#2F92EE;'>#Med#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=57, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=11459, encryptionId=eb6b1145939, topicName=Med)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=a12645, createdName=智慧医人, createdTime=Tue May 19 12:53:51 CST 2020, time=2020-05-19, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1047811, encodeId=48a9104e8110f, content=梅斯里提供了很多疾病的模型计算公式,赞一个!, beContent=null, objectType=article, channel=null, level=null, likeNumber=80, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=f0620, createdName=CHANGE, createdTime=Mon May 18 00:53:51 CST 2020, time=2020-05-18, status=1, ipAttribution=)]
    2020-05-19 智慧医人
  4. [GetPortalCommentsPageByObjectIdResponse(id=1884327, encodeId=ade8188432e0c, content=<a href='/topic/show?id=3b2112532d8' target=_blank style='color:#2F92EE;'>#Nat#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=69, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=12532, encryptionId=3b2112532d8, topicName=Nat)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=2e6f107, createdName=liye789132251, createdTime=Thu May 21 18:53:51 CST 2020, time=2020-05-21, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1262785, encodeId=aa501262e85eb, content=<a href='/topic/show?id=52941002359d' target=_blank style='color:#2F92EE;'>#预测模型#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=66, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=100235, encryptionId=52941002359d, topicName=预测模型)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=c3ff68, createdName=维他命, createdTime=Tue May 19 12:53:51 CST 2020, time=2020-05-19, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1610490, encodeId=11111610490d3, content=<a href='/topic/show?id=eb6b1145939' target=_blank style='color:#2F92EE;'>#Med#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=57, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=11459, encryptionId=eb6b1145939, topicName=Med)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=a12645, createdName=智慧医人, createdTime=Tue May 19 12:53:51 CST 2020, time=2020-05-19, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1047811, encodeId=48a9104e8110f, content=梅斯里提供了很多疾病的模型计算公式,赞一个!, beContent=null, objectType=article, channel=null, level=null, likeNumber=80, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=f0620, createdName=CHANGE, createdTime=Mon May 18 00:53:51 CST 2020, time=2020-05-18, status=1, ipAttribution=)]
    2020-05-18 CHANGE

    梅斯里提供了很多疾病的模型计算公式,赞一个!

    0

相关资讯

J Endod:侵袭性颈环吸收:分布、潜在的倾向因素和临床特征

这篇研究的目的是为了调查侵袭性颈环吸收(ICR)的分布、潜在的倾向因素和临床特征。

张文宏:不是所有症状都要去检测,全面检测只会挤兑医疗资源

4月4日18:00(巴黎时间4月4日12:00),中国驻法国大使馆邀请张文宏教授与在法华人华侨、留学生等进行在线交流,回答海外同胞们关心的疫情发展、个人防护等热点问题。

北京一境外输入病例隔离期出现症状未报告并自行服药,致重症

4月5日下午,第72场北京市新型冠状病毒肺炎疫情防控工作新闻发布会召开。北京市疾控中心副主任庞星火通报了昨日境外输入确诊病例情况。

Gastroenterology:斯坦福大学研究报告:恶心和腹泻也是COVID-19症状!

发烧、咳嗽和呼吸急促是COVID-19的典型症状,但根据一项新的斯坦福大学医学研究,可能会遗漏胃肠道症状,例如恶心和腹泻。研究人员发现,除了上呼吸道症状外,大量感染新病毒的人还食欲不振、恶心、呕吐和腹

J Endod:深龋中临床症状和微生物丛之间的联系

在龋病发展过程中,细菌种类的组成和相对丰度一直在不停的变化;然而,这些变化与临床症状之间的联系还未可知。这篇研究的目的是为了评估晚期牙本质龋临床症状和特殊微生物之间的联系。

Neurology:遗传性额颞叶痴呆在出现症状前脑室系统就在慢慢的扩大

本研究旨在评级遗传性额颞叶痴呆(FTD)脑室系统扩张的时间进程,识别出现症状前FTD突变携带者脑室扩张的发病时间及发病率。

Baidu
map
Baidu
map
Baidu
map