Baidu
map

Dent Mater J:预测模型对于牙列表面粗糙度和显微硬度的准确性分析

2019-10-11 lishiting MedSci原创

这篇研究的目的是为了比较人工神经网络模型(ANN)与体外试验结果的差异。

这篇研究的目的是为了比较人工神经网络模型(ANN)与体外试验结果的差异。为了进行该项实验,研究将4副不同上颌磨牙牙列分别置于茶、咖啡、可乐、樱桃汁和去离子水中。检测样本的Vickers显微硬度和表面粗糙度值。随后,检测不同牙列ANN模型的显微硬度和表面粗糙度预测值。采用反向传播算法研发一种与显微硬度和表面粗糙度总数相关的模型。模型的独立变量为去离子水、茶、过滤咖啡、可乐、樱桃汁、时间和牙列。显微硬度和表面粗糙度作为因变量。结果显示,神经网络体系结构具有包含10个神经单位的1个输入层,6个神经单位的2个隐藏层,2个神经单位的1个输出层和epoch大小为48,可以给与较好的预测。另外,用于牙科材料的预测模型也可以支持体外研究。原始出处:Deniz ST, Ozkan P, et al. The accuracy of the prediction models for surface roughness and micro hardness of denture teeth. Dent Mater J. 2019 Oct 2. doi: 10.4012/dmj.2018-014.本文系梅斯

版权声明:
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (4)
#插入话题
  1. [GetPortalCommentsPageByObjectIdResponse(id=1970143, encodeId=e93d19e0143ab, content=<a href='/topic/show?id=913a59e29c0' target=_blank style='color:#2F92EE;'>#显微硬度#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=63, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=59729, encryptionId=913a59e29c0, topicName=显微硬度)], attachment=null, authenticateStatus=null, createdAvatar=https://wx.qlogo.cn/mmopen/aLGWoFXAyMbIu3qymFOyheQLjPSX3OUs5GmkyBlcCOwTPIeq3why9NGibxxUqYo6hcx8qZLHZFgNPnBK1yzWeOFpyg2OnWOt0/0, createdBy=fa4716, createdName=zhouqu_8, createdTime=Mon Apr 27 01:18:00 CST 2020, time=2020-04-27, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1905967, encodeId=733d190596e07, content=<a href='/topic/show?id=34953120e52' target=_blank style='color:#2F92EE;'>#准确性#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=98, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=31207, encryptionId=34953120e52, topicName=准确性)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=512a199, createdName=lilianxiang, createdTime=Sat Feb 29 16:18:00 CST 2020, time=2020-02-29, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1262774, encodeId=fecc1262e745a, content=<a href='/topic/show?id=52941002359d' target=_blank style='color:#2F92EE;'>#预测模型#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=52, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=100235, encryptionId=52941002359d, topicName=预测模型)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=c3ff68, createdName=维他命, createdTime=Sun Oct 13 01:18:00 CST 2019, time=2019-10-13, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1047737, encodeId=d7cc104e737c7, content=梅斯里提供了很多疾病的模型计算公式,赞一个!, beContent=null, objectType=article, channel=null, level=null, likeNumber=106, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=f0620, createdName=CHANGE, createdTime=Fri Oct 11 13:18:00 CST 2019, time=2019-10-11, status=1, ipAttribution=)]
  2. [GetPortalCommentsPageByObjectIdResponse(id=1970143, encodeId=e93d19e0143ab, content=<a href='/topic/show?id=913a59e29c0' target=_blank style='color:#2F92EE;'>#显微硬度#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=63, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=59729, encryptionId=913a59e29c0, topicName=显微硬度)], attachment=null, authenticateStatus=null, createdAvatar=https://wx.qlogo.cn/mmopen/aLGWoFXAyMbIu3qymFOyheQLjPSX3OUs5GmkyBlcCOwTPIeq3why9NGibxxUqYo6hcx8qZLHZFgNPnBK1yzWeOFpyg2OnWOt0/0, createdBy=fa4716, createdName=zhouqu_8, createdTime=Mon Apr 27 01:18:00 CST 2020, time=2020-04-27, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1905967, encodeId=733d190596e07, content=<a href='/topic/show?id=34953120e52' target=_blank style='color:#2F92EE;'>#准确性#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=98, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=31207, encryptionId=34953120e52, topicName=准确性)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=512a199, createdName=lilianxiang, createdTime=Sat Feb 29 16:18:00 CST 2020, time=2020-02-29, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1262774, encodeId=fecc1262e745a, content=<a href='/topic/show?id=52941002359d' target=_blank style='color:#2F92EE;'>#预测模型#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=52, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=100235, encryptionId=52941002359d, topicName=预测模型)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=c3ff68, createdName=维他命, createdTime=Sun Oct 13 01:18:00 CST 2019, time=2019-10-13, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1047737, encodeId=d7cc104e737c7, content=梅斯里提供了很多疾病的模型计算公式,赞一个!, beContent=null, objectType=article, channel=null, level=null, likeNumber=106, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=f0620, createdName=CHANGE, createdTime=Fri Oct 11 13:18:00 CST 2019, time=2019-10-11, status=1, ipAttribution=)]
  3. [GetPortalCommentsPageByObjectIdResponse(id=1970143, encodeId=e93d19e0143ab, content=<a href='/topic/show?id=913a59e29c0' target=_blank style='color:#2F92EE;'>#显微硬度#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=63, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=59729, encryptionId=913a59e29c0, topicName=显微硬度)], attachment=null, authenticateStatus=null, createdAvatar=https://wx.qlogo.cn/mmopen/aLGWoFXAyMbIu3qymFOyheQLjPSX3OUs5GmkyBlcCOwTPIeq3why9NGibxxUqYo6hcx8qZLHZFgNPnBK1yzWeOFpyg2OnWOt0/0, createdBy=fa4716, createdName=zhouqu_8, createdTime=Mon Apr 27 01:18:00 CST 2020, time=2020-04-27, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1905967, encodeId=733d190596e07, content=<a href='/topic/show?id=34953120e52' target=_blank style='color:#2F92EE;'>#准确性#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=98, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=31207, encryptionId=34953120e52, topicName=准确性)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=512a199, createdName=lilianxiang, createdTime=Sat Feb 29 16:18:00 CST 2020, time=2020-02-29, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1262774, encodeId=fecc1262e745a, content=<a href='/topic/show?id=52941002359d' target=_blank style='color:#2F92EE;'>#预测模型#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=52, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=100235, encryptionId=52941002359d, topicName=预测模型)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=c3ff68, createdName=维他命, createdTime=Sun Oct 13 01:18:00 CST 2019, time=2019-10-13, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1047737, encodeId=d7cc104e737c7, content=梅斯里提供了很多疾病的模型计算公式,赞一个!, beContent=null, objectType=article, channel=null, level=null, likeNumber=106, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=f0620, createdName=CHANGE, createdTime=Fri Oct 11 13:18:00 CST 2019, time=2019-10-11, status=1, ipAttribution=)]
  4. [GetPortalCommentsPageByObjectIdResponse(id=1970143, encodeId=e93d19e0143ab, content=<a href='/topic/show?id=913a59e29c0' target=_blank style='color:#2F92EE;'>#显微硬度#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=63, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=59729, encryptionId=913a59e29c0, topicName=显微硬度)], attachment=null, authenticateStatus=null, createdAvatar=https://wx.qlogo.cn/mmopen/aLGWoFXAyMbIu3qymFOyheQLjPSX3OUs5GmkyBlcCOwTPIeq3why9NGibxxUqYo6hcx8qZLHZFgNPnBK1yzWeOFpyg2OnWOt0/0, createdBy=fa4716, createdName=zhouqu_8, createdTime=Mon Apr 27 01:18:00 CST 2020, time=2020-04-27, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1905967, encodeId=733d190596e07, content=<a href='/topic/show?id=34953120e52' target=_blank style='color:#2F92EE;'>#准确性#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=98, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=31207, encryptionId=34953120e52, topicName=准确性)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=512a199, createdName=lilianxiang, createdTime=Sat Feb 29 16:18:00 CST 2020, time=2020-02-29, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1262774, encodeId=fecc1262e745a, content=<a href='/topic/show?id=52941002359d' target=_blank style='color:#2F92EE;'>#预测模型#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=52, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=100235, encryptionId=52941002359d, topicName=预测模型)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=c3ff68, createdName=维他命, createdTime=Sun Oct 13 01:18:00 CST 2019, time=2019-10-13, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1047737, encodeId=d7cc104e737c7, content=梅斯里提供了很多疾病的模型计算公式,赞一个!, beContent=null, objectType=article, channel=null, level=null, likeNumber=106, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=f0620, createdName=CHANGE, createdTime=Fri Oct 11 13:18:00 CST 2019, time=2019-10-11, status=1, ipAttribution=)]
    2019-10-11 CHANGE

    梅斯里提供了很多疾病的模型计算公式,赞一个!

    0

相关资讯

Ann Thorac Surg:阳性环周切缘与食管癌患者预后不佳相关

深度浸润、淋巴结受累、近端及远端切缘等常见组织学特征与食管癌长期生存相关。然而环周切缘(CRM)对食管癌患者生存期的重要性一直存在争议。为了进一步深入研究,来自我国浙江大学医学院附属第一医院肿瘤外科、浙江省肿瘤医院胸外科的吴捷等人进行了一项荟萃分析研究,结果显示阳性CFM与食管癌患者预后不佳相关。该研究发表在2013年12月21日出版的《胸外科年鉴》(Ann Thorac Sur)上。 该荟萃分

Ann Thorac Surg:胸腔镜食管粘膜下肿瘤剜除术安全可行

食管黏膜下肿瘤(SMTs)通常是良性的,外科剜除术是广泛接受的首选的治疗方法。然而,胃肠道间质瘤(GISTs)有恶变的可能,可能需要接受食管切除,具有较高的并发症发生率和死亡率。通常通过开胸或开腹手术方法治疗。最近有报道采用微创剜除术上治疗食管粘膜下肿瘤,认为这种技术可能难以用于大病灶患者,并且可能增加手术的并发症。 针对这种情况,来自韩国成均馆大学医学院胸心外科的Yong Soo Choi教授

Ann Surg Oncol:AFP分层有利于预测乙肝相关肝癌预后

研究要点 1.手术前的AFP检测是乙肝相关性肝癌切除术预后的预测指标。 2.将AFP分层和纤维化分层相结合就可以建立预测HCC预后的模型。 3.在现行的诊断标准下,即使AFP处于正常范围,不同的AFP也会影响HBV相关的肝癌的疾病进展和预后。 甲胎蛋白(AFP)水平与乙肝相关性肝细胞肝癌有关。虽然血浆AFP是影响病人生存率的指标之一,但最理想的临界值是多少还未知。来自美国的研究人员

Neurology:美国神经病学学会(AAN)轻度认知障碍临床指南

美国神经病学学会(AAN)更新了公布于2001年的轻度认知障碍(MCI)指南

Stroke:人工神经网络计算机断层扫描灌注预测缺血核心

由此可见,综合临床和CTP数据的ANN可准确预测缺血核心。

盘点:Ann Neurol 8月刊研究精选

Ann Neurol8月研究精选

Baidu
map
Baidu
map
Baidu
map