Nat Neuron:呼吸神经元回路建立需两个关键基因
2013-01-23 叶予 Nature.com
纽约大学Langone医学中心的科学家揭示了呼吸神经元回路建立所需的两个关键基因。他们的这项研究作为封面文章,发表在Nature旗下Nature Neuroscience杂志十二月刊上。这一发现将有助于治疗脊髓损伤和肌萎缩侧索硬化症ALS等神经退行性疾病。肌萎缩侧索硬化症ALS会逐渐杀死控制着呼吸、移动和进食等肌肉运动的神经元。研究人员发现的两个关键基因是一类特殊神经细胞的分子代码,这类神经细胞被
纽约大学Langone医学中心的科学家揭示了呼吸神经元回路建立所需的两个关键基因。他们的这项研究作为封面文章,发表在Nature旗下Nature Neuroscience杂志十二月刊上。这一发现将有助于治疗脊髓损伤和肌萎缩侧索硬化症ALS等神经退行性疾病。肌萎缩侧索硬化症ALS会逐渐杀死控制着呼吸、移动和进食等肌肉运动的神经元。研究人员发现的两个关键基因是一类特殊神经细胞的分子代码,这类神经细胞被统称为PMC(phrenic motor column)。
“如果脊柱中PMC区域受伤,就会立刻导致呼吸停止。”领导该研究的生理学和神经科学助理教授Jeremy Dasen说,PMC神经细胞 “这可能是我们体内最重要的运动神经元”。不过迄今为止人们并不了解PMC神经元与其他神经元的区别,对PMC神经元的发育机制也所致甚少。PMC细胞将恒流电化学信号从轴突传到隔肌,控制肺部以呼吸的自然节律进行扩张和松弛。“现在我们知道PMC细胞与其他运动神经元的区别,就可以进行深入研究,寻找能够选择性增强PMC细胞活性的途径,” Dr. Dasen说。PMC神经元退化是ALS和脊髓损伤患者的主要死因。
在这项为期三年的研究中,研究人员为了区别PMC神经元向隔神经注射了反向示踪的荧光物质,随后观察脊髓中发荧光的神经元。他们构建了特殊的转基因小鼠,在小鼠运动神经元及其轴突中表达绿色荧光蛋白GFP,以此观察隔神经。经过一系列实验,研究人员不仅标注了PMC神经元的特征性基因表达模式,还解析了基因的功能。研究显示,Hoxa5和Hoxc5这两个基因是控制PMC正确发育的主要因素。Hox基因本就是动物发育过程中著名的调控因子。研究人员在小鼠胚胎的运动神经元中沉默了Hoxa5和Hoxc5,发现PMC不能形成正常组织形式,也不能与隔肌正确连接,导致新生动物无法呼吸。
“在胎儿发育后期删除这些基因,PMC神经元的数量也会下降,隔肌上无法形成足够的隔神经,” Dr. Dasen说。Dr. Dasen计划在这一发现的基础上对更广泛的呼吸回路进行研究,包括脑干中负责生成节律的神经元,这些神经元会对二氧化碳水平、压力等其他环境因子进行应答。“了解了PMC细胞之后,我们就可以顺藤摸瓜去解析更广泛的呼吸回路,尝试理清所有呼吸相关的网络,”他说。研究人员指出,了解呼吸网络的作用机制,将有助于治疗呼吸相关疾病。
doi:10.1038/nn.3242
PMC:
PMID:
Sustained Hox5 gene activity is required for respiratory motor neuron development
Polyxeni Philippidou,1 Carolyn M Walsh,1 Josée Aubin,2 Lucie Jeannotte2 & Jeremy S Dasen1
Respiration in mammals relies on the rhythmic firing of neurons in the phrenic motor column (PMC), a motor neuron group that provides the sole source of diaphragm innervation. Despite their essential role in breathing, the specific determinants of PMC identity and patterns of connectivity are largely unknown. We show that two Hox genes, Hoxa5 and Hoxc5, control diverse aspects of PMC development including their clustering, intramuscular branching, and survival. In mice lacking Hox5 genes in motor neurons, axons extend to the diaphragm, but fail to arborize, leading to respiratory failure. Genetic rescue of cell death fails to restore columnar organization and branching patterns, indicating these defects are independent of neuronal loss. Unexpectedly, late Hox5 removal preserves columnar organization but depletes PMC number and branches, demonstrating a continuous requirement for Hox function in motor neurons. These findings indicate that Hox5 genes orchestrate PMC development through deployment of temporally distinct wiring programs.
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
#关键基因#
68
#Neuron#
71
#Nat#
65