统计中内生性问题的解决方案
2014-06-27 MedSci MedSci原创
所谓内生性,就是模型中的一个或多个解释变量与随机扰动项相关。内生解释变量会造成严重的后果:不一致性inconstent和有偏biased,因为不满足误差以解释变量为条件的期望值为0。产生解释变量内生一般有三个原因: 1. 遗漏变量:如果遗漏的变量与其他解释变量不相关,一般不会造成问题。否则,就会造成解释变量与残差项相关,从而引起内生性问题。 2. 度量误差 (measurement e
所谓内生性,就是模型中的一个或多个解释变量与随机扰动项相关。内生解释变量会造成严重的后果:不一致性inconstent和有偏biased,因为不满足误差以解释变量为条件的期望值为0。产生解释变量内生一般有三个原因: 1. 遗漏变量:如果遗漏的变量与其他解释变量不相关,一般不会造成问题。否则,就会造成解释变量与残差项相关,从而引起内生性问题。 2. 度量误差 (measurement error):由于关键变量的度量上存在误差,使其与真实值之间存在偏差,这种偏差可能会成为回归误差(regression error)的一部分,从而导致内生性问题。3. 解释变量与被解释变量相互影响(也称联立性)解决内生性问题的方法主要有: 1.工具变量法(IV) 这种方法相信大家都已经学过,就是找到一个变量和内生化变量相关,但是和残差项不相关。在OLS的框架下同时有多个IV,这些工具变量被称为two stage least squares (2SLS) estimator。具体的说,这种方法是找到影响内生变量的外生变量,连同其他已有的外生变量一起回归,得到内生变量的估计值,以此作为IV,放到原来 的
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
#解决方案#
70
刚接触的理论,学习中
164