样本量过少回归分析如何分析处理与解释
2017-03-21 刘重杰 刘重杰
回归是统计学中最常用的模型,但是,有时使用回归后发现结果难以解释,或者与临床实际并不符合,十分困惑。这可能是什么原因呢? 虽然,实际原因很多,但是重要原因之一是样本量太小!很小小样本得出回归的结果,其实并不"回 归",因此,在处理小样本做多因素回归分析时,要慎重。传统一般认为在logistic回归时,变量与样本量之比为至少5倍,即纳入5个变量时,样本量至少也需要25例,实际上,这是保守估计。如果
回归是统计学中最常用的模型,但是,有时使用回归后发现结果难以解释,或者与临床实际并不符合,十分困惑。这可能是什么原因呢? 虽然,实际原因很多,但是重要原因之一是样本量太小!很小小样本得出回归的结果,其实并不"回 归",因此,在处理小样本做多因素回归分析时,要慎重。传统一般认为在logistic回归时,变量与样本量之比为至少5倍,即纳入5个变量时,样本量至少也需要25例,实际上,这是保守估计。如果每个变量能超过40例样本时,回归的结果往往是不错的。 谈到回归,要讲其核心---最小二乘法(OLS)。 学会OLS,有人还明白了ML等方法的含义;现在学统计分析的时候,或多或少会安排统计软件的实践课程,于是大家学会了使用Excel,乃至SAS中如何来做经典的回归分析。看过不少的文献,很多都忽略了回归分析模型诊断这个环节——可能很多标准教科书没有强调,甚至是没有讲;这不能不说是一个遗憾。 回归分析使用最广泛,误用的情况也多了些。下面使用一个经典的例子,来“恶心”一下那些“过分钟爱”经典回归分析的人——我在很多课堂上都举过这个例子(Anscombe),作为从基础课程向中级乃至高级课程的开场白。上面有
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
想学习一下,这个太需要了
68
数完对点是什么意思
111
#样本#
65
学习了,非常感谢!
183
这个板块太好了,对学习非常有用。
132
#回归分析#
62
还行吧,加油。。。
157
学习,以前没注意到
170
前提条件很重要
134
不错,学习了!
83