Baidu
map

SPSS教程第十六课:统计图的绘制

2012-04-12 生物谷 生物谷

 统计图是用点的位置、线段的升降、直条的长短或面积的大小等来表达资料的内容。它可以把资料所反映的变化趋势、数量多少、分布状态和相互关系等形象直观地表现出来,以便于读者的阅读、比较和分析。     本章将介绍SPSS在绘制常用统计图方面的功能。由于计算机绘图具有快速、清晰、规范、可修正以保证准确无误等特点,故在论文、报告等写作中有着十分重要的应用价值。

 统计图是用点的位置、线段的升降、直条的长短或面积的大小等来表达资料的内容。它可以把资料所反映的变化趋势、数量多少、分布状态和相互关系等形象直观地表现出来,以便于读者的阅读、比较和分析。

    本章将介绍SPSS在绘制常用统计图方面的功能。由于计算机绘图具有快速、清晰、规范、可修正以保证准确无误等特点,故在论文、报告等写作中有着十分重要的应用价值。

 

第一节 直条图

 

15.1.1 主要功能

    调用Graphs菜单的Bar过程,可绘制直条图。直条图用直条的长短来表示非连续性资料(该资料可以是绝对数,也可以是相对数)的数量大小。

 

15.1.2 实例操作

    [例15-1]研究血压状态与冠心病各临床型发生情况的关系,分析资料如下所示,试绘制统计图。

 

血压状态

年龄标化发生率(1/10万)

冠状动脉机能不全

猝死

心绞痛

心肌梗塞

正常

临界

异常

8.90

10.63

19.84

12.00

18.05

30.55

34.71

46.18

73.06

44.00

67.24

116.82

 

15.1.2.1 数据准备

    激活数据管理窗口,定义变量名:年龄标化发生率为RATE,冠心病临床型为DISEASE,血压状态为BP。RATE按原数据输入,DISEASE按冠状动脉机能不全=1、猝死=2、心绞痛=3、心肌梗塞=4输入,BP按正常=1、临界=2、异常=3输入。

 

15.1.2.2 操作步骤

    选Graphs菜单的Bar...过程,弹出Bar Chart定义选项框(图15.1)。在定义选项框的下方有一数据类型栏,系统提供3种数据类型:

 

15.1  直条图定义选项框

 

    Summaries for groups of cases:以组为单位体现数据;

    Summaries of separate variables:以变量为单位体现数据;

    Values of individual cases:以观察样例为单位体现数据。

    大多数情形下,统计图都是以组为单位的形式来体现数据的。在定义选项框的上方有3种直条图可选:Simple为单一直条图、Clustered为复式直条图、Stacked为堆积式直条图,本例选复式直条图。

    点击Define钮,弹出Define Clustered Bar:Summaries for Groups of Cases对话框(图15.2),在左侧的变量列表中选rate点击Ø钮使之进入Bars Represent栏的Other snmmary function选项的Variable框,选disease点击Ø钮使之进入Category Axis框,选bp点击Ø钮使之进入Define Clusters by框。

 

15.2  直条图绘制对话框

    点击Titles...钮,弹出Titles对话框,在Title栏内输入“血压状态与冠心病各临床型年龄标化发生率的关系”,点击Continue钮返回Define Clustered Chart:Summaries for Groups of Cases对话框,再点击OK钮即完成。

    系统在统计图编辑窗口中输出直条图。由于在原始数据库中,为了输入的方便,分组采用简单的1、2、3……等数字表示,故体现在统计图中的分组条目会让读者感到不理解。为此,用户可点击窗口上端工具栏中的Edit钮,对统计图进行编辑。用户欲在图中的哪一部位(如:标题、纵横轴的尺度与标目、统计图的色彩或花纹,等等)进行编辑,只须将鼠标箭头指向这一部位并双击鼠标左键,系统即弹出相应的编辑对话框。编辑过程简便易行,用户不妨一试。本章对此内容的介绍从略。

 

15.1.2.3  结果显示

    下图为经编辑(主要是将分组的标目改为中文)后血压状态与冠心病各临床型年龄标化发生率关系的直条图。从图中可见,冠心病各临床型的发生率以冠状动脉机能不全最低、心肌梗塞最高;随血压的升高,疾病发生率升高;异常血压对心肌梗塞发生的影响作用大于其他临床型。

 

 

 

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]  ... 下一页  >> 

第二节 线图

 

15.2.1 主要功能

    调用Graphs菜单的Line过程,可绘制线图。线图是用线条的上下波动形式,反映连续性的相对数资料的变化趋势。非连续性的资料一般不用线图表现。

 

15.2.2 实例操作

    [例15-2]某地调查居民心理问题的存在现状,资料如下表所示,试绘制线图比较不同性别和年龄组的居民心理问题检出情况。

 

年龄分组

心理问题检出率(%)

男性

女性

  15-

  25-

  35-

  45-

  55-

  65-

  75-

10.57

11.57

9.57

11.71

13.51

15.02

16.00

19.73

11.98

15.50

13.85

12.91

16.77

21.04

 

15.2.2.1  数据准备

    激活数据管理窗口,定义变量名:心理问题检出率为RATE,年龄分组为AGE,性别为SEX,AGE与SEX可定义为字符变量。RATE按原数据输入,AGE按分组情况分别输入15-、25-、35-、45-、55-、65-、75-,SEX是男的输入M、女的输入F。

 

15.2.2.2  操作步骤

    选Graphs菜单的Line...过程,弹出Line Chart定义选项框,有3种线图可选:Simple为单一线图、Multiple为多条线图、Drop-line为落点线图,本例选多条线图。

    点击Define钮,弹出Define Multiple Line:Summaries for Groups of Cases对话框(图15.3),在左侧的变量列表中选rate点击Ø钮使之进入Lines Represent栏的Other snmmary function选项的Variable框,选age点击Ø钮使之进入Category Axis框,选sex点击Ø钮使之进入Define Lines by框。

 

15.3  线图绘制对话框

 

    点击Titles...钮,弹出Titles对话框,在Title栏内输入“某地男女性年龄别心理问题检出率比较”,点击Continue钮返回Define Multiple Line:Summaries for Groups of Cases对话框,再点击OK钮即完成。

 

15.2.2.3  结果显示

    下图即为系统输出的线图,分析表明,15-岁组和65-岁以上组的心理问题检出率较其他年龄组为高,女性的心理问题检出率较男性为高。

 

 

上一页  [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]  ... 下一页  >> 

第三节 区域图

 

15.3.1 主要功能

    调用Graphs菜单的Area过程,可绘制区域图。实际上区域图是用面积来表现连续性的频数分布资料,面积越大,频数越多,反之亦然。

 

15.3.2 实例操作

    [例15-3]在某城市抽样研究20-49岁已婚育龄妇女的避孕现状,频数分布资料参见下表,试绘制区域图。

 

年龄分组

避孕现状

20-

25-

30-

35-

40-

45-

63

939

1860

1277

1141

987

68

184

273

91

173

399

 

15.3.2.1  数据准备

    激活数据管理窗口,定义变量名:避孕有无的人数为NUMBER,年龄分组为AGE,避孕现状为CONTRA,AGE与CONTRA可定义为字符变量。NUMBER按实际人数输入(有无避孕的人数全部输入变量NUMBER中),AGE按分组情况分别输入20-、25-、30-、35-、40-、45-,CONTRA有的输入Y、无的输入N。

 

15.3.2.2  操作步骤

    选Graphs菜单的Area...过程,弹出Area Chart定义选项框,有2种线图可选:Simple为简单区域图、Stacked为堆积区域图,本例选堆积区域图。

    点击Define钮,弹出Define Stacked Area:Summaries for Groups of Cases对话框(图15.4),在左侧的变量列表中选number点击Ø钮使之进入Areas Represent栏的Other snmmary function选项的Variable框,选age点击Ø钮使之进入Category Axis框,选contra点击Ø钮使之进入Define Areas by框。

 

15.4  区域图绘制对话框

 

    点击Titles...钮,弹出Titles对话框,在Title栏内输入“某市已婚育龄妇女避孕状况分析”,点击Continue钮返回Define Stacked Area:Summaries for Groups of Cases对话框,再点击OK钮即完成。

 

15.3.2.3  结果显示

    下图显示:年轻妇女(25岁之前)有避孕人数与无避孕人数差不多,25岁之后,有避孕人数占绝大多数,而45岁以后,无避孕人数又开始增加。

 

 

上一页  [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]  ... 下一页  >> 

第四节 构成图

 

15.4.1 主要功能

    调用Graphs菜单的Pie过程,可绘制构成图。构成图也称馅饼图,用一个圆来表现百分构成,读者可根据圆中各个扇形面积的大小,判断某一部分在全部中所占比例的多少。

 

 

15.4.2 实例操作

    [例15-4]某年某医院用中草药治疗182例慢性支气管炎患者,其疗效如下所示,试绘制构成图。

 

疗效

病例数

百分构成(%)

控制

显效

好转

无效

37

71

60

14

20.3

39.0

33.0

7.7

合计

182

100.0

 

15.4.2.1  数据准备

    激活数据管理窗口,定义变量名:百分构成资料为DATA,构成部分的名称为TEXT,TEXT定义为字符变量。DATA按实际百分数输入,TEXT依次输入1、2、3、4。

 

15.4.2.2  操作步骤

    选Graphs菜单的Pie...过程,弹出Pie Chart定义选项框,构成图仅有一种,故直接点击Define钮,弹出Define Pie:Summaries for Groups of Cases对话框(图15.5),在左侧的变量列表中选data点击Ø钮使之进入Slices Represent栏的Other snmmary function选项的Variable框,选text点击Ø钮使之进入Define Slices by框。点击Titles...钮,弹出Titles对话框,在Title栏内输入中草药治疗慢性支气管炎效果构成图,点击Continue钮返回Define Pie:Summaries for Groups of Cases对话框,再点击OK钮即完成。

 

15.5  构成图绘制对话框

 

15.4.2.3  结果显示

    下图显示:该中草药效果良好,无效的比例很小。

 

 

上一页  [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]  ... 下一页  >> 

第五节 高低区域图

 

15.5.1 主要功能

    调用Graphs菜单的High-Low过程,可绘制高低区域图。高低区域图用于表现多种形式的数据区域,如一组测定值的范围(最小值—最大值)、95%可信区间值(低限—高限)、 ±1.96·SD(低值—均值—高值)等,形象直观。

 

15.5.2 实例操作

    [例15-5]为了解水体污染情况,某市测定三种水源中放射性元素锶(90Sr)的含量(10-2Bq·L-1),资料如下,试绘制高低区域图。

 

水源点

范围

均值

自来水

 

水库水

0.65~0.93

1.31~2.11

1.01~2.16

0.79

1.71

1.58

 

15.5.2.1  数据准备

    激活数据管理窗口,定义变量名:数据的变量名为DATA,将范围的低值与高值以及均值一并输入;设一变量为CAT,用于定义低值、高值和均值,低值为1、高值为2、均值为3;水源点变量名为GROUP,依次输入1、2、3。

 

15.5.2.2  操作步骤

    选Graphs菜单的High-Low...过程,弹出High-Low Chart定义选项框,高低区域图有5种,即:

    Simple High-Low-Close:简单线型高低区域图;

    Clustered High-Low-Close:复式线型高低区域图;

    Simple Range Bar:简单直条型高低区域图;

    Clustered Range Bar:复式直条型高低区域图;

    Difference Line:差异线区域图。

    本例选用简单线型高低区域图。然后点击Define钮,弹出Define Simple High-Low-Close:Summaries for Groups of Cases对话框(图15.6),在左侧的变量列表中选data点击Ø钮使之进入Bars Represent栏的Other snmmary function选项的Variable框,选cat点击Ø钮使之进入Category Axis框, 选group点击Ø钮使之进入Define High-Low-Close by框。点击Titles...钮,弹出Titles对话框,在Title栏内输入某市测定不同水体放射性元素锶的含量比较,点击Continue钮返回Define Simple High-Low-Close:Summaries for Groups of Cases对话框,再点击OK钮即完成。

 

 

15.6  高低区域图绘制对话框

 

15.5.2.3  结果显示

    下图显示放射性元素锶的含量在湖水中最高、在自来

版权声明:
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (0)
#插入话题

相关资讯

SPSS教程第十三课:可靠性分析

2.1  主要功能     在精神卫生与社会医学研究中,经常需要借助量表来了解对象的某一特性。如常用的症状自评量表(SCL-90)即用于评定对象精神病症状的表现形式与强度;又如生活事件量表(LES)即用于对精神刺激进行定性和定量分析。在完成一份量表的编制工作后,或在准备将一份已有的量表作实际应用前,需要对量表的信度进行考核。   &

SPSS教程第十课:对数线性模型

对数线性模型是用于离散型数据或整理成列联表格式的计数资料的统计分析工具。在对数线性模型中,所有用作的分类的因素均为独立变量,列联表各单元中的例数为应变量。对于列联表资料,通常作χ2 检验,但χ2 检验无法系统地评价变量间的联系,也无法估计变量间相互作用的大小,而对数线性模型是处理这些问题的最佳方法。   第一节 General过程   9.1.1 主要功能  

SPSS教程第十一课:分类分析

人们认识事物时往往先把被认识的对象进行分类,以便寻找其中同与不同的特征,因而分类学是人们认识世界的基础科学。在医学实践中也经常需要做分类的工作,如根据病人的一系列症状、体征和生化检查的结果,判断病人所患疾病的类型;或对一系列检查方法及其结果,将之划分成某几种方法适合用于甲类病的检查,另几种方法适合用于乙类病的检查;等等。统计学中常用的分类统计方法主要是聚类分析与判别分析。  &nbs

SPSS教程第十四课:非参数检验

  许多统计分析方法的应用对总体有特殊的要求,如t检验要求总体符合正态分布,F检验要求误差呈正态分布且各组方差整齐,等等。这些方法常用来估计或检验总体参数,统称为参数统计。     但许多调查或实验所得的科研数据,其总体分布未知或无法确定,这时做统计分析常常不是针对总体参数,而是针对总体的某些一般性假设(如总体分布),这类方法称非参数统计(Nonparam

SPSS教程第十五课:生存分析

 在临床诊疗工作的评价中,慢性疾病的预后一般不适合用治愈率、病死率等指标来考核,因为其无法在短时间内明确判断预后情况,为此,只能对患者进行长期随访,统计一定时期后的生存或死亡情况以判断诊疗效果。这就是生存分析。   第一节 Life Tables过程   14.1.1 主要功能     调用此过程时,系统将采用即寿命表分析法,完

SPSS教程第十二课:因子分析

1  主要功能     多元分析处理的是多指标的问题。由于指标太多,使得分析的复杂性增加。观察指标的增加本来是为了使研究过程趋于完整,但反过来说,为使研究结果清晰明了而一味增加观察指标又让人陷入混乱不清。由于在实际工作中,指标间经常具备一定的相关性,故人们希望用较少的指标代替原来较多的指标,但依然能反映原有的全部信息,于是就产生了主成分分析、对应分析、典

Baidu
map
Baidu
map
Baidu
map