机器学习助力神经科学的高维数据分析,相得益彰
2016-07-12 雪姬 36大数据
作者: Moritz Helmstaedter 引言:神经科学家正在生产庞大规模的数据组,其复杂性堪比真实世界中的分类任务。机器学习已经大大帮助了数据分析,但是,其准确性经常不如人类进行的数据分析。本文中,作者讨论了受神经科学启发的机器学习所面临的挑战以及希望。 当有机体在环境中行动时,有机体大脑负责处理高维感官数据。因此,从事大脑研究的神经科学家需要处理极其复杂的高维数据集,这给分析工作
作者: Moritz Helmstaedter 引言:神经科学家正在生产庞大规模的数据组,其复杂性堪比真实世界中的分类任务。机器学习已经大大帮助了数据分析,但是,其准确性经常不如人类进行的数据分析。本文中,作者讨论了受神经科学启发的机器学习所面临的挑战以及希望。 当有机体在环境中行动时,有机体大脑负责处理高维感官数据。因此,从事大脑研究的神经科学家需要处理极其复杂的高维数据集,这给分析工作带来不小的挑战。一个最明显的例子,在高分辨率神经联接组学(connectomics)这个新领域中, 3D 电子显微镜(EM)数据集正突破拍字节(PB)大关。 冷知识:connectomics(联接组学)是近年来一系列生命科学研究中「xx组学」的一支,譬如就有大家很熟悉的基因组学。意识从何而来?思维和智能是如何出现的?这些终极问题都蕴藏在大脑里面。联接组学是一个对大脑进行的逆向工程研究,希望研究明白大脑是怎么被建造的,而后就可以再建模拟的「大脑」,人工智能也许会因此而真正实现。 分析这些数据是个很大的挑战,而且只有使用机器学习技术,才能实现对这些数据集的重构(reconstruction)。功能成像或行
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
#神经科#
61
#神经科学#
85
#机器#
73