在R语言中比较不同机器学习算法的性能差异
2016-03-01 刘翔宇 译 CSDN
选择最好的机器学习模型 你如何根据需求选择最好的模型? 在你进行机器学习项目的时候,往往会有许多良好模型可供选择。每个模型都有不同的性能特点。 使用重采样方法,如交叉验证,就可以得到每个模型在未知数据上精准度的估计。你需要利用这些估计从你创建的一系列模型中选择一到两个最好的模型。 仔细比较机器学习模型 当你有了新数据集,使用多种不同的图形技术可视化数据是个好主意,你可以从不同角度来观
选择最好的机器学习模型 你如何根据需求选择最好的模型? 在你进行机器学习项目的时候,往往会有许多良好模型可供选择。每个模型都有不同的性能特点。 使用重采样方法,如交叉验证,就可以得到每个模型在未知数据上精准度的估计。你需要利用这些估计从你创建的一系列模型中选择一到两个最好的模型。 仔细比较机器学习模型 当你有了新数据集,使用多种不同的图形技术可视化数据是个好主意,你可以从不同角度来观察数据。 这种想法也可以用于模型选择。你应该使用不同的方法来进行估计机器学习算法的准确率,依此来选择一到两个模型。 你可以使用不同的可视化方法来显示平均准确率、方差和模型精度分布的其他性质。 比较并选择R语言的机器学习模型 在本节中,你将会学到如何客观地比较R语言机器学习模型。 通过本节中的案例研究,你将为皮马印第安人糖尿病数据集创建一些机器学习模型。然后你将会使用一系列不同的可视化技术来比较这些模型的估计准确率。 本案例研究分为三个部分: 准备数据集:加载库文件和数据集,准备训练模型。 训练模型:在数据集上训练标准机器学习模型,准备进行评估。 比较模型:使用8种不同的技术比较训练得到的模型。 准备数据集
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
#R语言#
63
感觉很难的样子
199
一直想学R,但总是感觉好难,不好学
151
感觉好难
164
#语言#
69
#机器#
56
了解下
123
分享出去让大神来看
137
get
78
学习get
133