Nature精选图像:诺奖技术呈现的美丽世界
2014-10-22 Richard Van Noorden Nature
2014年的诺贝尔化学奖授予了三位率先突破光学极限的科学家。现在,200nm已经不再是光学显微镜所能达到的极限,人们对细胞的认识从未像现在这么清晰。 纳米显微技术常能获得异常美丽的图像,说它们是艺术品也不为过。Nature网站近日挑选了一些这样的图像以飨读者。 诺贝尔奖得主Eric Betzig(霍华德·休斯医学研究院 HHMI)获得这张图像,是为了理解大肠杆菌如何组织膜中的三
2014年的诺贝尔化学奖授予了三位率先突破光学极限的科学家。现在,200nm已经不再是光学显微镜所能达到的极限,人们对细胞的认识从未像现在这么清晰。
纳米显微技术常能获得异常美丽的图像,说它们是艺术品也不为过。Nature网站近日挑选了一些这样的图像以飨读者。 诺贝尔奖得主Eric Betzig(霍华德·休斯医学研究院 HHMI)获得这张图像,是为了理解大肠杆菌如何组织膜中的三个受体蛋白。亮光来自于研究人员标记在目的蛋白上的荧光分子。Betzig与斯坦福大学的William Moerner开发了光激活定位显微技术PALM,这一技术在这里揭示了蛋白的细胞定位。 这张图片的左半部分是PALM的三维成像,显示了黑腹果蝇细胞中的微管。红色、蓝色到紫色,这些颜色代表着微管的不同深度,展示了Z轴方向共500nm的微管三维结构。右半部分是同一个细胞的普通显微镜成像。 这是一个人类脑瘤样本,在共聚焦显微镜下显得很模糊(左),用STED技术(受激发射损耗)成像就清楚多了(右)。这一技术的发明者是诺贝尔奖获得者Stefan Hell(Max Planck生物物理化学研究所)。 在诺贝尔奖获得者的工作之后,其他研究者也发明了工作原理类似的纳米显微镜。哈佛大学的庄晓薇(Xiaowei Zhuang)用自己开发的随机光学重建显微技术STORM,展示了细长的神经纤维(轴突)如何每隔180nm就被肌动蛋白的环加固。 这里显示的是一个细胞中的线粒体。图像的左边是传统显微镜获得的图像,中间是超高分辨率技术STORM的三维成像,右边是STORM的层切面图像。 结构照明显微技术SIM是第四个问世的超高分辨率技术,这一技术通过特殊的照明模式(栅格移动)产生干涉图案(摩尔纹现象),这些干涉图案包含了样本的结构信息。这是一张人骨癌细胞的三维SIM图像,肌动蛋白呈紫色,DNA呈蓝色,线粒体呈黄色。 技术生成了许多漂亮的细胞图像。这是一个癌细胞,红色的是肌动蛋白,蓝色的是微管,绿色的是转铁蛋白受体(负责将铁带入细胞)。 原始出处:本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
好好学习
136
好好学习
101
好好学习
131
好好学习
115
好好学习
134
好好学习
121
好好学习
177
好好学习
135
好好学习
106
好好学习
95